Missouri Water Resources Law 2000 **Annual Report** #### Missouri Department of Natural Resources Division of Geology and Land Survey P.O. Box 250, Rolla, MO 65402-0250 (573) 368-2100 or FAX (573) 368-2111 #### **Cover Photo:** Falling Spring, Oregon County. Photo by Jim Vandike. Library of Congress No. 00-41565 Missouri Classification No. MO/NR. Ge9:52/000 Missouri Department of Natural Resources' Division of Geology and Land Survey, **2000 Missouri** Water Resources Law - Annual Report, Water Resources Report No. 66, 61 p. As a recipient of federal funds, the Missouri Department of Natural Resources cannot discriminate against anyone on the basis of race, color, national origin, age, sex, or handicap. If anyone believes he/she has been subjected to discrimination for any of these reasons, he/she may file a complaint with either the Missouri Department of Natural Resources or the Office of Equal Opportunity, U.S. Department of the Interior, Washington, DC, 20240. ### MISSOURI WATER RESOURCE LAW Sections 640.400 to 640.435 shall be known and may be cited as the "Missouri Water Resources Law," in recognition of the significance of the conservation, development and appropriate use of water resources of Missouri. The law, in its entirety, is located in Appendix 1. ### 2000 LRIAN MISSELLAL WAATERORI ### **CONTENTS** | | Page | |---|------| | INTRODUCTION | 1 | | WATER QUALITY AND QUANTITY | 3 | | Public Drinking Water Systems | 3 | | Wastewater Treatment Systems | 6 | | Water Quality Coordinating Committee | 6 | | Nonpoint Source Pollution | 6 | | Impaired Waters | 7 | | Water Pollution Control Tools | 8 | | Soil and Water Conservation | 9 | | Soil and Water Conservation Programs Available in the State | 10 | | Hazardous Wastes | 12 | | Storage Tanks | 14 | | Solid Wastes | 14 | | Wells for Water, Heat Pumps, Monitoring and Mineral Testing | 15 | | Abandoned Well Plugging | 17 | | Wells for Oil, Gas and Underground Injection | 22 | | Reclamation of Mined Lands | 23 | | Environmental Emergency Response | 24 | | INTERSTATE USE OF WATER | 27 | | Upper Mississippi River Basin Association | 27 | | Missouri River Basin Association | 27 | | Arkansas-White-Red Basins Inter-Agency Committee | 28 | | Lower Mississippi River Conservation Committee | 29 | | Interstate Council on Water Policy | 29 | | Mississippi River Parkway Commission | 29 | | Mississippi River Basin Alliance | | | MONITORING WATER QUALITY | 31 | | Violations Down | 32 | | Radon | 32 | | Surface Water Quality Monitoring | 35 | | Monitoring Program Evaluation | 36 | | INVENTORY OF WATER USE AND AVAILABILITY | 37 | |--|----| | Water Use | | | Groundwater Availability | | | Groundwater-Level Observation Well Network | | | Surface Water Availability | 43 | | Dam Safety | | | STATE WATER PLAN | | | Background | 47 | | Phase 1 - State Water Plan Volumes | 48 | | Volume VII: A Summary of Missouri Water Law | 48 | | Phase 2 - Regional Reports | 49 | | Topics in Water Use - Northeastern Missouri, Water Resources | | | Report No. 59 | 49 | | Topics in Water Use: Central Missouri | 50 | | Topics in Water Use: Northwest Missouri | 50 | | SPECIAL WATER QUALITY PROTECTION AREAS | 51 | | INTERAGENCY TASK FORCE | 53 | | Central Missouri | 53 | | RECOMMENDATIONS | 55 | | APPENDICES | | | Appendix 1 - Missouri Water Resources Law | 57 | | Appendix 2 - Division of Environmental Quality Regional Office | | | Boundaries | 61 | #### INTRODUCTION A new millennium heralds the 2000 Annual Report for the Missouri Water Resources Law, as required in Section 640.426, RSMo. This report provides an overview of the activities that the Missouri Department of Natural Resources (DNR) performed to meet the objectives of the law in the 1999 calendar year. The report focuses upon the accomplishments of individual programs and relates program activities to those sections of the law that are addressed. The report follows the same organizational structure as the law, beginning with Water Quality and Quantity. Each section begins with text from the law, followed by a brief discussion of how the department satisfied the requirements of the law. Through an accumulation of information from different programs throughout the department, each section emphasizes the progress that has been made in implementing the Water Resources Law. #### TYPES OF WATER SYSTEMS Public Water System – Provides water to at least 25 people at least 60 days a year or has at least 15 service connections. Public water systems can be publicly owned or privately owned. There are two types of public water systems, community and non-community. Community Water System – Has at least 15 service connections used by year-around residents or regularly serves at least 25 residents year-around. Non-Community Water System – Serves an average of at least 25 persons at least 60 days a year. ### 2000 URLAW MISSOURIAL WATER UAL ### WATER QUALITY AND QUANTITY RSMo 640.400.2 - The department shall ensure that the quality and quantity of the water resources of the state are maintained at the highest level practicable to support present and future beneficial uses. The department shall inventory, monitor and protect the available water resources in order to maintain water quality, protect the public health, safety and general economic welfare. #### PUBLIC DRINKING WATER SYSTEMS The Department of Natural Resources (DNR) regulates more than 2,700 public water systems in Missouri to ensure the safe quality and adequate quantity of drinking water provided throughout the state. More than 90% of Missouri's population is served by public water systems, according to 1990 census figures. A public water system provides water through pipes or other constructed conveyances, for human consumption, to at least 15 service connections or serves an average of at least 25 people for at least 60 days each year. There are three types of public water systems: Community (such as towns, subdivisions, or mobile home parks), nontransient noncommunity (such as schools or factories), and transient non- community systems (such as rest stops or parks). The requirements for construction, operation, and water quality monitoring vary among systems, based on their type, size, and source of water. Regulation is carried out under the authority of sections 640.100 through 640.140, RSMo. Since drinking water can be a principal agent in the transmission of communicable diseases, these systems must be routinely inspected and samples from each system must be frequently analyzed. The department, in cooperation with the Department of Health, routinely monitors drinking water quality. The DNR state environmental laboratory analyzes 35,000 to 40,000 drinking water samples annually to help ensure the safe quality of drinking water. The results provide early detection of potential health problems. Without this protection, the incidence of waterborne illnesses in the state could increase. The "Monitoring Water Quality" section of this report contains additional information about the department's drinking water monitoring efforts. In addition to monitoring, the department is implementing other initiatives to protect drinking water quality, such as source water assessment and protection. The 1998 amendments to Missouri's drinking water statutes direct the department to conduct source water assessments of drinking water supplies. The department is working to delineate source water protection areas for 4,400 wells and has verified the locations of over 3,300 potential drinking water contaminant sites. These assessments increase awareness of potential threats to drinking water quality, but do not mean the public water system wells have been contaminated. The source water assessments will be completed in 2003. Staff of the department's Public Drinking Water Program (PDWP) and the University of Missouri's Center for Agricultural, Resource, and Environmental Systems have made maps and information on all public water system wells available to the public on the Internet at http:/www.cares.missouri.edu/va/. In addition, detailed land-use maps have been completed and are available for 66 watersheds that provide public drinking water. Outreach activities have been conducted on educating the public about the importance of protecting their drinking water sources from contamination. PDWP staff have worked closely with several local communities to inform them of the benefits of source water protection and to assist them in developing source water protection programs. Thirty-nine water systems in Missouri have completed or are in the process of developing local programs. The department strongly encourages voluntary source water protection efforts to protect water quality and hopes that communities will take advantage of the source water assessment results as a starting point for local source water protection efforts. The 1998 amendments also authorize a drinking water loan program for low-interest loans to eligible public water systems. Most of the funding for the loan program comes from the U.S. Environmental Protection Agency (EPA), with a 20% match from state funds required. The loan program provides a mechanism for the department to assist public systems in meeting water quality needs. During the first year of the leveraged loan program, loan applications totaling about \$273 million were received from 65 water systems for the \$61 million available. In 1999 an additional \$19.6 million in federal funding was received for the loan program. With leveraging, this was increased to \$61 million for leveraged loans. These funds have been committed to 31 water systems. Since the loan program began, five water systems have closed on loans totaling over \$36 million. The department has also been actively involved in assisting public water systems to provide an annual report to their customers on
the quality of their drinking water. The PDWP provided over 1400 water systems with nearly complete "skeleton" Consumer Confidence Reports (CCR) so they could meet this new EPA requirement with a minimum of effort. The skeleton reports included data from the department's environmental laboratory and The Missouri River. Photo from DNR/Nick Decker. the Department of Health laboratory concerning drinking water sample results, violation information from PDWP files and standard language required in each CCR. Many small systems were able to use these skeletons as their official CCR without any modifications. For those who wanted to customize the report, the skeleton report was made available as an electronic file for use in any word processor. There is generally plenty of good quality water in Missouri. By far the largest source of water for Missourians is the Missouri and Mississippi River systems. The abundant supply of water in these rivers, and their proximity to the state's major population centers, makes them popular as a water source. Groundwater is the next most used source for drinking water for Missouri's community supplies. This is especially true in southern Missouri where good quality groundwater is easy to obtain and requires very little treatment to be used as a drinking water source. Raw water sources vary in quality and quantity from one area of the state to another. To produce finished water of satisfactory quality and quantity on a consistent basis, treatment plants must be designed specifically for the raw water sources. Department staff review engineering plans and reports for the construction or renovation of public drinking water systems to ensure that essential sanitary standards are met. Construction permits are issued as appropriate. Department staff members assure that all public water systems are properly operated and maintained and that they operate under a state permit to dispense water. The public water systems must be operated in compliance with the law and regulations. #### WASTEWATER TREATMENT SYSTEMS Many agencies and organizations are closely associated with water quality issues, however, DNR is the agency responsible for maintaining and improving water quality in Missouri's streams, lakes and groundwater. It is also the agency responsible for enforcing the Missouri Clean Water Law. Missouri water quality standards are rules made by the Missouri Clean Water Commission. The standards list the classified waters of the state, their beneficial uses, and the allowable concentrations of various pollutants. The department requires all point source discharges of contaminants (other than from single-family residences and certain stormwater discharges) to obtain a water pollution control permit and comply with its terms. Permits cover point-source discharges such as treated sewage from towns, subdivisions or businesses, industrial wastewater discharges, and runoff from large concentrated animal feeding operations (CAFOs), mines, quarries and chemical storage areas. The permits limit the amount of pollutants that can be discharged so those water quality standards set for streams, lakes, and groundwater are not violated. The State of Missouri issues permits that are recognized by the federal government as equivalent to federal permits (commonly referred to as National Pollutant Discharge Elimination system or NPDES permits under the federal Clean Water Act). This delegation of authority means that the state has the primary responsibility for permitting, inspection and enforcement activities on regulated facilities. #### WATER QUALITY COORDINATING COMMITTEE There is an ad hoc assembly of roughly 30 organizations meeting under the aegis of the Water Pollution Control Program, called the Water Quality Coordinating Committee. This group is an informal interagency-and-public committee dealing with water quality issues. It meets on the third Tuesday of each month at 10:00 A.M. in Jefferson City or Columbia (if there is an agenda for the month's meeting). Nonprofit organizations, business representatives, agency employees and citizens attend to discuss water quality issues. This is a partnering effort that has been going on for several years, and is designed to keep everyone informed so that those with an interest can interact with each other efficiently. #### NONPOINT SOURCE POLLUTION Nonpoint source pollution (NPS) is defined as contamination caused by diffuse sources that are not regulated as point sources. This type of pollution is normally associated with agricultural, silvicultural and urban runoff, and runoff from construction activities. It results in humanmade or human-induced alteration of the chemical, physical, biological or radiological integrity of the water. In practical terms, nonpoint source pollution does not result from a discharge at a specific single location (such as a pipe), but generally results from land runoff, precipitation, atmospheric deposition or percolation. In simpler terms, it is pollution that enters waterways by overland flow or infiltration, as opposed to through conveyances such as pipes or channels. By the early 1970s, many streams and lakes across the land had become open conduits for the nation's sewage and industrial wastes. With passage of the federal Water Pollution Control Act of 1972 (P.L. 92-500), Congress set in motion a massive clean up. Throughout the following decades, hundreds of waste treatment facilities were constructed. Previously polluted streams and lakes became cleaner and aquatic life began to reappear. However, 24 years and billions of dollars later, we have not completely achieved the goal of having water that is clean enough for swimming, recreational uses, and protection of aquatic life. Only about half of today's pollutants come from pipes or point sources. The remainder is from nonpoint sources. The Missouri Nonpoint Source Management Plan was developed to address these nonpoint sources. The plan, which focuses state and federal activities and funds related to nonpoint source pollution, was significantly revised in 1999. The stated mission and goals of the plan are as follows- #### Mission: Preserve and protect the quality of the water resources of the state from nonpoint source impairments. #### Goals: - Continue and enhance statewide water quality assessment processes to evaluate water quality and prioritize watersheds affected by nonpoint source pollution; - Improve water quality by implementing nonpoint source-related projects and other activities; - Maintain a viable, relevant, and effective Nonpoint Source Management Program with the flexibility necessary to meet changing environmental conditions and regulations. Specific, quantifiable objectives have been developed to help achieve these goals, accompanied by methods to be used in evaluating success in meeting the goals and objectives. #### **IMPAIRED WATERS** There has been, since 1999, heightened interest at the national level in sections of the federal Clean Water Act pertaining to the identification and treatment of impaired waters. It is believed that this interest will translate into additional funding for Missouri and other states to accelerate ongoing programs that address both point and nonpoint pollution sources. The federal Clean Water Act requires states to assemble a list of waters that do not meet water quality standards. This list must be completed and submitted every two years. DNR completed the 1998 list in October, 1998, and EPA approved the list in April, 1999. The list contains the names of 186 lakes, streams or river segments. EPA must review the list and either accept or modify it. Once the list is made final, the state is obligated to complete studies to determine actions needed to return the waters to compliance with standards. These studies are used to determine what are called "Total Maximum Daily Loads (TMDLs)." Finally, the state is responsible to ensure the needed actions are taken, and the waters are returned to compliance. Federal regulations addressing TMDLs are being revised. The year 2000 list of impaired waters is being developed and will be submitted to EPA for review, comment and approval. #### WATER POLLUTION CONTROL TOOLS There are many methods the state uses to protect its waters or repair damaged waters. These include monitoring water quality and the status of pollution control facilities, permitting, financial and technical assistance and enforcement. Monitoring water quality is fully described in a separate chapter. Monitoring information is compiled into several reports, the most notable being the "305(b) report," which is required by the federal Clean Water Act, Section 305(b). This report documents how water in the wells of each state meet that state's water quality standards. For example, it identifies the mileage of waters that provide for safe swimming, and those that are expected to be safe, but are not. These reports also provide the basis for establishing impaired waters lists and other management activities. The 305(b) reports are prepared every two years and the data are reported to Congress. In addition to monitoring water quality throughout the state, the department compiles lists of water pollution control needs, which support the state's requests for federal grant and loan assistance. The Needs Survey, as it is known, documents the work that must be done to bring water quality related facilities into compliance with design standards or other conditions where they will not damage water quality. Federal grant and loan funds are apportioned to the states in relation to their needs. In addition to permits described under Wastewater Treatment Systems, permits are required for concentrated animal feeding operations (CAFOs). The permits ensure that properly designed facilities are constructed for holding animal wastes. Letters of Approval (LOA) are offered for animal feeding operations smaller than 1,000 animal units. An
animal unit is the equivalent of one beef steer. This voluntary program was developed two decades ago, and has been operated by the department as a free service to agricultural producers. The Department of Natural Resources administers a program that distributes grants or low-interest loans for the construction of wastewater treatment and drinking water treatment facilities. The funds for this program come from the state and the U.S. Environmental Protection Agency. In 1998, this loan program dispensed loans valued at \$68 million. The loan program has been in effect since 1990 and requires that most of the burden of funding falls on cities. From 1972 to 1992, a state-federal grant program funded up to 90 percent of the construction costs of wastewater treatment facilities, which helped meet the needs of both expanding populations and replacement of aging facilities. Today, there is concern about the ability of the present funding system to continue to meet construction needs. In 1995, DNR entered into an agreement with the Department of Agriculture to operate an agricultural loan program. Under this program, DNR will loan funds to the Agricultural and Small Business Development Authority (ASBDA). ASBDA will use the funds to finance, at subsidized interest rates, animal waste facilities for producers. The loans are limited to animal feeding operations of less than 1,000 animal units. Producers' repayments are used by ASBDA to repay the loan from DNR. The department has committed \$10,000,000 to these loans. Another \$10,000,000 is available if the program is successful. Enforcement actions related to water pollution are sometimes necessary. During 1998, there were about 258 active cases involving violations of the Clean Water Law or regulations. Of these, 83 cases were resolved, and the facilities returned to compliance during the year. These settlements included collection by DNR and the attorney general's office of more than \$1,200,000 for environmental damages and penalties. #### SOIL AND WATER CONSERVATION Soil is a fragile natural resource capable of sustaining human life. All living things depend on the soil for food. Everything we eat, and most of what we wear comes from the soil. Today, farmers work soils intensively to produce food for a growing population. In Missouri, agriculture is one of the largest industries. Of the 44 million acres in the state, more than half (27 million) are devoted to agricultural production. Sometimes, however, agricultural production can contribute to erosion. Erosion is a process where wind and water move crop-producing soil off the land. This topsoil often collects in ditches, along roadsides or ends up in our lakes, rivers and streams. To prevent this, many landowners employ various soil conservation practices on their farms. Controlling and preventing erosion on Missouri's farms helps ensure production and keeps food plentiful and prices reasonable for future generations. Missouri is now a leader in soil conservation, but in the past the state had the second highest rate of soil erosion in the nation. In 1984, 1988, and again in 1996, Missourians voted for a one-tenth-of-one-percent sales tax to support soil and water conservation efforts and state parks. The tax money added a unique twist to an already strong mix of federal, state and local players working to save our soil. Each county has a soil and water conservation district formed by a vote of eligible landowners in the county. These landowners also elect the board of supervisors to oversee the operations of the district. The supervisors work with the landowners and encourage them to participate in the district's voluntary programs. They work together to make decisions on the best treatments for the land. The local districts work with the Missouri Soil and Water Districts Commission and the federal Natural Resources Conservation Service (NRCS) to administer the state soil and water conservation programs. The Commission sets the policy for use of the tax money and administers it through DNR's Soil and Water Conservation Program. More than 75 percent of expenditures have gone back on the land. NRCS offers technical expertise to landowners on the best treatment or preventive measures for their land. Other partners include the University of Missouri-Outreach & Extension, and the Missouri departments of Agriculture and Conservation. Missouri is now first in the nation in the rate of reducing soil erosion. But more than 4 million acres of agricultural land still need treatment. The Commission's work and goal for the coming years is outlined in its "Plan for the Future." The goal is to treat 95 percent of all agricultural land in the state by the year 2006. Through the programs that have been set up to do that, participants also will address agricultural runoff and water quality issues, thus providing the state with a second benefit on its investment. One way to do that is through the Special Area Land Treatment (SALT) Pro- gram. This program brings landowners in watersheds together to help solve soil erosion and water quality problems. Keeping soil and agricultural chemicals out of rivers and streams and on the land contributes to agricultural productivity and good water quality. ### SOIL AND WATER CONSERVATION PROGRAMS AVAILABLE IN THE STATE Currently, the Special Area Land Treatment (SALT) program is being expanded to address agricultural nonpoint source pollution (AgNPS) issues associated with runoff from production agriculture. The SALT program is a voluntary approach to natural resource management and conservation. A project grant is made available to local soil and water conservation districts to provide general support for the project, technical assistance, and information and education activities in the watershed. Financial assistance is available to landowners to encourage the adoption and implementation of best management practices. SALT projects are coordinated with the Natural Resources Conservation Service (NRCS) of the U.S. Department of Agriculture (USDA) for planning and technical support. AgNPS SALT projects can be combined with other programs to achieve maximum results from the resources provided to treat associated water quality problems. The Environmental Quality Incentive Program (EQIP) is a federal watershed program administered by the NRCS that may fit with an AgNPS project to address water quality problems. Other state and federal programs available that support AgNPS SALTs include the Water Pollution Control Program's 319s, the Missouri Department of Conservation's (MDC) Wildlife Incentive Programs, and the Missouri Department of Agriculture's Animal Waste Treatment System Loan Program. Partnerships between programs are extremely important to accomplish environmental goals because they can bring together the resources needed to help ensure a successful project. Missouri is fortunate to have these partnerships coming together to address the water quality issues in the state. The intent of the AgNPS SALT Program is to provide a basic level of resources to make significant contributions to the control and reduction of nonpoint source water pollution from agricultural runoff. The concept is based on numerous partners contributing to the project and various tools utilized to accomplish project goals. Through joint efforts, limited resources and funding can be used in a cost-effective manner. There are currently twelve pilot AgNPS SALT projects, portions of which are located in 20 counties throughout the state. Because boundaries of AgNPS SALT projects are based on watershed units, five of the twelve projects overlap into more than one county. The twelve pilot projects are located in the following counties: Harrison, Grundy, Daviess, DeKalb, Clinton, Ray, Carroll, Caldwell, Chariton, Randolph, Howard, Saline, Boone, Osage, Bates, Laclede, Greene, Newton, Barry, and Stoddard. A typical Missouri farm demonstrating an erosion control technique called contour plowing. Some of the water quality issues being addressed in the pilot projects include: sedimentation, excess nutrient loading (by nitrogen and phosphorus), chemical contamination from pesticides and herbicides, loss of aquatic habitat, streambank erosion, fecal coliform bacteria from animal wastes, and karst groundwater contamination. Often AgNPS SALT projects provide a springboard for landowners to address additional natural resource problems. Landowners working together in this way can address additional resource goals, such as improved water quality and improved pasture management, along with erosion treatment and control. The AgNPS SALT projects provide cost-share and reimbursement of interest paid on loan incentives to install and maintain conservation practices. To ensure the effectiveness of the practices used on the farm and to be eligible, practices have to be installed and certified as completed according to NRCS or MDC technical specifications. Two other programs administered by the Soil and Water Conservation Program are the Cost-Share and Loan Interest-Share Programs. These programs help landowners carry out conservation plans and the goals established in the Soil and Water Districts Commission's "Plan for the Future." The Cost-Share Program funds up to 75 percent of the cost of installing conservation practices on agricultural land. Through this program, the state has installed some 121,000 conservation practices, saving over 157 million tons of topsoil on about 2 million acres of cropland and pastureland. The Loan Interest-Share Program refunds a portion of the interest on loans for purchasing conservation equipment. The Soil and Water Districts Commission considers local soil and water conservation districts to be the delivery system for its conservation programs. As such, a major point of the "Plan for the Future" is to strengthen the role of the local districts. Districts receive grants to provide technical assistance for
landowners and other operational costs. Finally, the commission plans to assist in the completion of the initial inventory of Missouri's soil resources by the end of state fiscal year 2002. The soil survey is used by a number of different occupations to provide valuable soils information to the citizens of the state. The soil survey information is highly useful to many entities working on soils and related water quality issues. Missouri is a leader in soil conservation as a result of soil and water conservation districts' work and the voluntary commitment of Missouri farmers. These soil conservation successes contribute to improving the state's water quality as well. #### **HAZARDOUS WASTES** The department regulates hazardous waste to protect human health and the environment and to ensure that any contamination is remediated as quickly as possible. The department oversees groundwater and surface water monitoring at hazardous waste sites within the state. As part of the oversight, hazardous waste facilities are required to determine the impact of past and present waste management practices on water quality. This includes determining the extent of contamination, the distribution of contamination and the potential impact on other waters or water users. If contamination is found to pose a threat, the department will ensure remedial actions are taken. Groundwater and surface water monitoring activities, and any subsequent remediation, can occur at five different types of sites: - Resource Conservation and Recovery Act (RCRA) treatment, storage and disposal facilities (TSDs); - 2) Superfund cleanup sites; - 3) Voluntary cleanup sites; - 4) Enforcement directed cleanup sites; and - Leaking underground storage tank facilities. As of January 1, 2000, there were 3,246 of Missouri's hazardous waste generators considered "small quantity generators" and 650 considered "large quantity generators." There presently are 95 TSD's in Missouri. The department may require RCRA TSD facilities whose practices might affect large bodies of surface water in Missouri to have a surface water-monitoring program. Currently, nine RCRA TSD facilities in Missouri are monitoring surface water for various contaminants. These facilities are required to report to the department at least once per year. The results of the monitoring are examined and tracked by the department. In accordance with state regulation, a TSD facility that is subject to federal groundwater monitoring requirements must conduct groundwater monitoring on a regular basis until released from such obligation by the department. Currently, 47 TSD sites are conducting groundwater monitoring in Missouri. Of these 47 sites, 21 are actively remediating groundwater contamination to improve the quality of water that may ultimately migrate to surface water bodies or drinking water sources. Each TSD facility must submit an annual groundwater monitoring report to the DNR field investigatiors use drilling equipment to collect subsurface soil samples at a hazardous waste site. Photo from DEQ/ESP. department for an official evaluation. The evaluation includes determination of contamination data trends and the extent of contamination resulting from TSD facility operation. All groundwater monitoring data from RCRA TSDs in Missouri are entered into a database where it can be tracked and evaluated. The DNR periodically conducts groundwater monitoring field audits at TSD facilities to help ensure that their samples are collected and analyzed in accordance with accepted standard operating procedures and that the sampling data generated by TSDs are reliable. The Hazardous Waste Program's Federal Facility Section is providing oversight of 48 sites for which the Department of Defense (DOD) has the responsibility for environmental remediation, and two sites for which the Department of Energy (DOE) has the responsibility for environmental remediation. Of the 50 sites, four sites are on the National Priorities List (NPL), three are DOD sites and one is a DOE site. At NPL sites the U.S. EPA has the lead regulatory role leaving 46 sites for which the Hazardous Waste Program has the lead regulatory role. Groundwater remediation is continuing at two federal facilities; one is a DOD site and the other is a DOE site. Nearly all of the remaining 48 sites are undergoing surface and groundwater investigation for characterization of contamination and migration. Additional hazardous waste sites fall under the "Superfund" law and its amendments. Superfund includes the authority to initiate and remediate actions. The Department of Natural Resources performs site assessments on potential Superfund sites and from these assessments, determines the degree of surface and groundwater investigations that will be required. Currently, 70 Superfund sites are undergoing some type of groundwater investigation. An additional 48 sites are undergoing regular groundwater and surface water monitoring. Of the 70 sites, 36 have undergone groundwater remediation, including providing alternative drinking water or natural attenuation. The department requires periodic reporting concerning these sites. Contamination concentrations and trends are tracked in order to recommend future actions. In 1994, the department began allowing hazardous substance site responsible parties to implement their own voluntary cleanup, thus creating Missouri's Voluntary Cleanup Program. These sites must be qualified first by virtue of not fitting into the RCRA TSD category or the Superfund National Priority List (NPL), and then the responsible party must express the willingness to remediate their site by entering into a formal agreement with the department. Currently, 119 sites are undergoing voluntary cleanup, and 62 sites have completed cleanup and received certificates of completion. Of the 119 sites undergoing cleanup, 70 sites involve groundwater monitoring or remediation, either in place now or expected to become part of the site cleanup. The Hazardous Waste Enforcement Section also directs and provides oversight on sites with hazardous waste contamination and requires testing and remediation, where appropriate, to protect surface water and groundwater. The section also coordinates with the Water Pollution Control Program to assure that necessary permits are obtained at sites under Hazardous Waste Enforcement action. #### STORAGE TANKS The department also regulates the operation and maintenance of underground storage tanks, as leaking tanks can pose a significant threat to Missouri's water resources. Tanks containing petroleum products and some hazardous substances compose the regulated tanks in Missouri. Most releases from underground storage tanks are gasoline releases. Gasoline poses a threat to groundwater because it contains benzene, a known carcinogen, and other chemical constituents, such as methyl tertiary butyl ether (MTBE). EPA has tenatively classified MTBE as a possible human carcinogen. MTBE is an additive to fuel to help the gasoline burn more completely. Requirements are in place to reduce the potential of a release from a UST. Upgrade standards took affect December 22, 1998, requiring underground storage tanks (USTs) to be equipped with spill overfill and corrosion protection. Another requirement for UST owners is to have leak detection installed on their systems. Leak detection methods are designed to alert the owner of a release occurring on their tank system. Despite these requirements, releases from tanks will continue to occur. Owners and operators are required to report a release from a tank to the department. Project managers are assigned to specific release sites to oversee the cleanup and remediation of tank releases and work with the owners and operators to devise a plan to clean up the contamination. Over the past eleven years, over 5,000 releases from underground storage have occurred with almost 3,900 of those being remediated to strict department standards. The department investigates sites where aquifers have been impacted from petroleum but where the source of contamination is not known. Investigative techniques such as dye tracing, monitoring well installation, soil drilling/probing, soil gas surveys and geophysical surveys all provide valuable insight to understanding the potential migration pathways in the subsurface. This can lead to identifying the responsible party and eventual restoration of the aquifer. #### TANK FACTS AS OF DEC.31,1999 | Underground Storage Tank Releases | 5,289 | |-----------------------------------|--------| | Cleanups Completed | 3,902 | | Ongoing Cleanups | 1,387 | | Aboveground Storage Tank | | | Release In Remedial Oversight | 236 | | Cleanups Completed | 30 | | Ongoing Cleanups | 200 | | Total USTs (active and closed) | 36,369 | | Total Closed USTs | 25,112 | | Total Active and Temporarily | | | Closed USTs | 11,257 | | In-Use Active USTs Meeting | | | Upgrade Requirements | 9,551 | | (97.1%) | | | In-Use Active USTs Meeting | | | Leak Detection Requirements | 9,708 | | (98.7%) | | #### SOLID WASTES Historically, some landfills have been a source of surface and groundwater contamination. As of April, 1994, stricter federal subtitle D design and operational requirements affected all operating landfills in Missouri. Some of the new requirements are related to establishing, developing and maintaining surface and groundwater monitoring. These include: detailed hydro-geologic investigations; installation of groundwater monitoring wells capable of detecting any contaminants that could leave the site; and installation of a composite liner and leachate collection system DNR field investigator measures the static water level in a landfill groundwater monitoring well. Photo from DEQ/ESP. on areas that were not covered by waste as of April, 1994. Another change that should help protect water quality in Missouri relates to the final "cover cap" requirements. Areas already landfilled but not properly
closed will require a final cover cap of at least two feet of compacted clay and one foot of soil. All areas with a geomembrane liner (an impermeable material that does not allow liquids to pass through it) require cap designs that include a geomembrane, even if the areas were previously permitted for another final cover cap design. There are more than 150 closed or abandoned landfills scattered throughout Missouri. These older landfills were not constructed or operated like the modern subtitle D sanitary landfills we have today. The presence of these older landfills poses an unknown impact to the water resources of Missouri. No statewide assessment has been conducted; however, it is very possible that they are contributing leachate contamination to both surface and subsurface waters. Currently, such an assessment is in the planning stages. If implemented, information obtained over the several year study could confirm impacts or eliminate them on a site by site basis. #### WELLS FOR WATER, HEAT PUMPS, MONITORING AND MINERAL TESTING If wells are not constructed or plugged properly, they most likely will allow surface water, with its contaminant load, to bypass the earth's natural filtering system and enter directly into drinking water aquifers. The "Water Well Drillers' Act" (section 256.600 to 256.640 RSMo) was passed into law in 1985. By the fall of 1987, rules were in place gov- erning the construction of domestic water wells, pump installations, and the plugging of abandoned wells. The drilling contractors and pump installation contractors were required to be permitted (licensed), and their drill rigs were required to be registered. This law was passed to ensure that the quality of Missouri's groundwater is maintained at the highest level practical to support present and future use. The importance of this law and its enforcement plays a pivotal role in the protection of our groundwater. An important amendment to this law was passed in 1991. The amendment brought the heat pump, monitoring well, and mineral test hole drilling industries under regulation. It also created the Well Installation Board. The department's Division of Geology and Land Survey (DGLS), with the oversight of the Well Installation Board, is responsible for implementation of the Water Well Drillers' Act. The Geological Survey Program within DGLS has been given the day to day tasks of implementation. | Date | TYPE OF WELLS | | | | | |-----------|---------------|------------|-----------|---------------|--| | Completed | Water | Monitoring | Heat Pump | Plugged Wells | | | 1986 | 130 | 0 | 0 | 0 | | | 1987 | 4,390 | 0 | 12 | 4 | | | 1988 | 5,606 | 2 | 18 | 7 | | | 1989 | 5,444 | 14 | 9 | 13 | | | 1990 | 5,499 | 0 | 0 | 1 | | | 1991 | 5,247 | 0 | 2 | 4 | | | 1992 | 5,907 | 0 | 2 | 5 | | | 1993 | 5,725 | 1 | 4 | 4 | | | 1994 | 6,620 | 1,183 | 507 | 742 | | | 1995 | 6,645 | 1,116 | 487 | 1,174 | | | 1996 | 6,952 | 811 | 288 | 1,124 | | | 1997 | 6,767 | 1,057 | 250 | 1,298 | | | 1998 | 6,888 | 1,089 | 199 | 1,399 | | | 1999 | 7,869 | 1,525 | 138 | 1,542 | | | TOTAL | 79,689 | 6,798 | 1,916 | 7,317 | | The following chart shows the number of wells reported since the "Water Well Drillers' Act" was created. This chart shows the number of completed certified wells drilled in Missouri during any given year. The numbers for water wells reflect wells in the private category as well as the public well category. It is extremely hard to estimate how many wells are drilled each year that are never reported. Geological Survey Program (GSP) personnel have been very diligent with their limited staff in the enforcement of the rules but a certain number of wells still are not reported each year. The rules state that the permitted contractors do not have to report that a new well has been drilled until 60 days after they have completed the job. It is important to note that after the 1991 amendment to the law was passed, rules had to be written and approved before reporting on monitoring wells and heat pump wells was required. These rules became effective December 13, 1993; therefore, the increase in numbers of heat pump wells and monitoring wells in 1994 reflects this regulatory change. Also, some contractors submitted records for heat pump and monitoring wells before they were required and these numbers are reflected in the chart. Typically, a mineral test hole is drilled, information obtained and the hole is plugged within 30 days; therefore, these types of wells are recorded only after they are plugged. As a tool to aid in proper well construction and well plugging, the department purchased a black and white, waterproof, downhole camera in 1994. At the time the department purchased this camera, it was almost at the "cutting edge" of technology. The downhole camera is less than two inches in diameter and, when lowered into a well, can send back a video image that shows in detail underground features that few have seen. This single Waterproof downhole camera. Camera head is less than 2 inches in diameter. Photo by Bruce Netzler. piece of equipment has revolutionized the division's ability to diagnose construction and contamination problems with water wells and provides the details needed to properly plug wells. The downhole camera is in constant use and a second one is being ordered. #### ABANDONED WELL PLUGGING It has been estimated that Missouri has from 150,000 to 300,000 unplugged abandoned wells. This may be a conservative estimate. After looking into the origin of this estimate it could easily be 500,000 unplugged wells and cisterns scattered across Missouri. Each one of these unplugged wells or cisterns is a danger either to the health, welfare and safety of Missourians or to the groundwater that we rely on so heavily for our water resources. Whenever surface contamination (pesticides, septic tank effluent, animal waste, chemicals, oil and grease, solvents, etc.) finds an unplugged well, it can quickly bypass the natural filtering system of soil, unconsolidated material and rock and directly contaminate the underground sources of water, called aquifers. Once an underground aquifer is contaminated, it is very difficult and very expensive to clean up. Prevention is always cheaper and better than remediation. Many things have changed since Missouri's early settlement days more than 150 years ago, but one thing that has not changed is the need for a dependable supply of water. If early settlers did not live near a river, spring, lake or stream they had to dig a well or cistern. The first wells were hand-dug and many of them are still in existence today but are rarely used and often forgotten. A hand-dug well is typically 5 to 10 feet in diameter and up to 50 feet deep. These wells were lined with rock or brick and were covered with a concrete or wooden cap. (The biggest hand-dug well in the U.S. is located in southwestern Kansas in the town of Greensburg and is 32 feet in diameter and 109 feet deep.) These types of wells are considered a major danger to life and limb. People have died across Missouri by accidentally falling into one of these wells. These types of tragedies can be avoided with a little preventive action. Looking into an old hand-dug well with cover removed. The well is approximately 4 to 5 feet in diameter and 30 feet deep. It is lined with field stone. Photo by Bruce Netzler. Abandoned and forgotten hand-dug well in farm lot. Notice rotted cover and old hand pump. Photo by Jim Vandike. Unplugged abandoned drilled wells are also a danger to personal safety and a potential conduit for surface derived pollutants. The size of Missouri's drilled wells range from the normal 6-inch diameter of a private domestic well, upwards to 36 inches in diameter. Many people do not realize that a well as small as 8 inches in diameter can be a death trap to young children. Some people still remember the drama that played out on television years ago about a little girl named Jessica McClure who was trapped in a well in Texas. The well was just 8 inches in diameter. She was very lucky to have been rescued. It may surprise many that the first and only law requiring abandoned wells to be plugged was enacted in 1991 and was an amendment to the Water Well Drillers Act (section 256.600 to 256.640 RSMo). This law states that wells abandoned after August 28, 1991, must be plugged according to approved standards. Therefore, wells abandoned before this date are not required to be plugged. That leaves a huge number of wells that have been abandoned before 1991 scattered across the countryside. There are some exceptions to this general rule. When a person hooks up to a water district and is using a well for water supply, that well must be plugged, unless the landowner wishes to use it for other reasons. The law also states that if a landowner permits hazardous or potentially hazardous conditions to exist on owned property that may cause deterioration of the groundwater, the landowner can be held liable. This does give some enforcement ability but would require a Notice of Violation and enforcement follow-up. It is important to note that if the landowner does not comply, the only recourse is referral to the Attorney General's Office and litigation. This is not the best way to achieve the goal of plugging abandoned wells and protecting groundwater. Generally speaking, an educational effort has been in progress since 1991. It is felt that if people understand the dangers of leaving abandoned wells open, they will want to plug them in an approved manner. To accomplish this, several educational aids have been developed. These aids are described in the following paragraphs. In the spring of 1992, a brochure entitled, "Eliminating An Unnecessary Risk: Abandoned Wells And Cisterns," was made available. The brochure focuses on the risk to human safety, livestock, and groundwater that exists when wells are left unplugged. The brochure begins with a history of Missouri's early
settlement days and the types of wells that were dug, and finishes with the modern drilled wells of today. It is written in layman's terms and, with the use of diagrams, sets out easy to understand approved methods for plugging all types of wells. The brochure is geared to private landowners who have the right to plug wells located on their property. When the well plugging regulations were developed, the least expensive and easiest methods were developed as options for the private landowner. This brochure has been reprinted numerous times and is distributed free of charge to anyone requesting it. The brochure has been used extensively as part of well plugging demonstrations that have been carried out in cooperation between the University Extension System and the division. To further enhance the department's ability to get peoples' attention, and to educate them on the importance of plugging abandoned wells, a traveling display was developed in early 1995. The display consists of six 4' by 8' carpeted panels held together by Velcro. This allows the display to be constructed in many shapes from flat to chevron to a six-sided circular structure. Department personnel made the display by using one-inch blue foam insulation board to which carpet was glued. This made a lightweight, attractive, strong and portable display. It was also inexpensive. Each panel has a strong message. Below is a summary of each panel. #### Panel 1 - Help Protect Your Community - Organize A Well Plugging Demonstration - Contact your local University Extension Office - Contact the Division of Geology and Land Survey - Cost-share money may be available from Farm Service Agency - Why Plug Unused Wells? Prevent loss of human life Protect your livestock and pets Limit landowner liability Increase property value Protect groundwater from potential pollution Lending institutions may require it #### Panel 2 - Unplugged Abandoned Wells Can Be Deadly This panel has reproductions of actual newspaper articles from Missouri and Kansas documenting cases where people and animals have fallen into abandoned wells. ## Panel 3 - The Dangers of Unplugged (Open) Wells This panel features the "Jessica McClure" tragedy that many people remember. Jessica McClure was the little girl who fell into an "eight inch" diameter abandoned well in Texas. Fifty-two and one half-hours later she was rescued from a well that could have become her grave. She survived and became one of the lucky ones - many are not so lucky. This section of the panel also includes a series of sized rings designed to show people exactly what size wells can be found in Missouri. The rings are on hooks so that they can be taken off the display and placed over the heads of people to see if they could fit inside an abandoned well of that size. The rings come in the following sizes: 6, 8, 10, 16 and 34 inches in diameter. These rings correlate to standard sized well casings used in Missouri. On the floor in front of this panel is a five foot diameter rug that shows an average size hand-dug well or cistern. People usually stand on this rug to view the exhibit. It helps to drive home the point that they could have just fallen into a well. #### Panel 4 - How to Plug Hand-Dug Wells, Bored Wells and Cisterns This panel shows a diagram of a handdug well before plugging and after plugging. It goes on to show the six steps required to plug hand-dug wells with photographs illustrating these steps. #### Panel 5 - How Pollutants Enter The Groundwater Through Unplugged Wells This panel shows, through diagrams and pictures, how pollutants can enter the groundwater via the annulus of poorly constructed wells or by deliberate disposal into abandoned wells. For a normal domestic well, the annulus is the space between the drilled hole (usually 8 5/8 inches in diameter) and the outside diameter of the 6 5/8 inch diameter well casing. This annulus must be sealed with cement slurry or bentonite (swelling clay) to prevent surface contamination from entering the well bore. Panel 6 - How To Plug Drilled Wells Used For Domestic Water Supply This panel shows a diagram of how to plug a domestic well in bedrock and a diagram of how to plug a domestic well in unconsolidated materials. Also, an illustrated, step-by-step approach is shown below each type of well. In an effort to reach even more people and to embrace the computer age, division personnel are in the process of developing a computer-generated well plugging demonstration using Power Point software. These well plugging modules will have excellent computer graphics and sound effects. Presentations will be developed for each different type of well, hand-dug well or cistern, drilled well in bedrock and drilled well in unconsolidated material. The plan is to place this on the Division of Geology and Land Survey's web page (http://www.dnr.state.mo.us/geology.htm) so that it can be viewed and downloaded by anyone. This will be an extremely important and pivotal accomplishment to further the message of how and why to plug abandoned wells. When this is placed on the Internet it will be instantly accessible to the entire world. Teachers will be able to incorporate this information into their teaching units on environmental issues. ## WELLS FOR OIL, GAS AND UNDERGROUND INJECTION The Oil and Gas Law was passed in 1965. This law requires wells used for oil and gas production, water disposal, enhanced oil recovery, gas storage and geologic information to be constructed in a manner that does not contaminate surface and groundwater resources. Approximately 9,775 wells have been permitted since 1966. In 1999, 21 wells were permitted. In addition to ensuring proper well construction, the oil and gas law requires a plugging bond to be placed on all permitted wells. This bond is required to be maintained until the wells are properly plugged. In the event an operator improperly abandons a well, the plugging bond is forfeited and the state, working through the Missouri Oil and Gas Council, has the authority to plug the well. The Underground Injection Control Program is an EPA-delegated program for which Missouri has primacy. Injection wells have been divided into five classes by EPA, based upon the type of fluid injected and where it is injected in relation to underground sources of drinking water. Missouri has wells that fit into two of these classes - Class II and Class V. Class II wells are oil- and gas-related injection wells. These wells may be used for the disposal of other fluids produced during oil extractions (mostly water) back into the producing horizon, or for enhanced recovery methods to increase production. These wells are subject to regulation under the Missouri Oil and Gas Law. Class V wells (also called shallow injection wells) include a variety of well types that inject fluid into or above an underground source of drinking water. In Missouri, this well category includes mine backfill wells, septic systems (tank and lateral field), sinkholes improved for drainage purposes, heat pump systems, and injection wells used in groundwater cleanup projects. Septic systems are regulated by the Department of Health. Most other types of Class V injection wells are regulated through the Clean Water Law. The department administers the program and maintains an inventory of Class II and Class V wells. #### RECLAMATION OF MINED LANDS The mission of the Missouri Land Reclamation Commission and the DNR Land Reclamation Program is to assure the beneficial restoration of mined lands and to protect public health, safety and the environment from the adverse effects of mining within Missouri. Active mining regulation includes permitting, inspection and enforcement activities. The minerals regulated include coal, industrial minerals (clay, barite, limestone, sandstone, sand and gravel, traprock and tar sands) and metallic minerals (lead, iron, zinc, copper, gold and silver). While the Land Reclamation Commission is responsible for overseeing coal and industrial mineral laws, the responsibility for carrying out the duties associated with metallic minerals regulations rests solely upon the Land Reclamation Program and the director of the Department of Natural Resources. At active coal mines, surface water quality is protected through National Pollutant Discharge Elimination System (NPDES) permitting. NPDES monitoring ensures that acid-forming spoils are being properly managed and adequate soil erosion control measures are being taken to prevent sedimentation or acid mine drainage from entering downstream tributaries. As for the protection of groundwater, coalmining companies are required, under land reclamation permits, to conduct hydrogeologic assessment prior to, during, and after mining. They evaluate any impacts to groundwater quantity or quality in the vicinity of mine sites. Mine operators are further required to mitigate adverse effects stemming from mining activities. For industrial mineral sites, the hydrogeologic evaluations are not required. Measures to control erosion and sediment movement off-site are required. Under the Metallic Minerals Law, the two lead mining companies and the one iron ore mining company in Missouri are required to provide plans and financial assurance for the continued maintenance of the mine waste sites after mining ceases. The objective is to ensure that the sites are stable and not subject to wind or water erosion of the waste materials (tailings). This primarily involves a coordination role to ensure that dam safety, water pollution control, air pollution control, and hazardous waste management regulatory requirements are met. An estimated 18,500 acres at approximately 850 industrial mineral mine sites in Missouri are permitted for mining. Nearly 12,000 acres at 14 coal mine sites are permitted and are either actively being mined or are in various stages of reclamation. In addition, there are 15 coal mine bond forfeiture sites with approximately 5,100 acres that
the department now has responsibility to reclaim. Seven of these projects have been completed and eight are in various stages of reclamation design or construction. The 10 lead mine sites and one iron ore mine site permitted under the Metallic Minerals Law comprises approximately 4,600 acres. Significant health, safety, and environmental problems are often associated with coal mine lands that were abandoned or inadequately reclaimed prior to passage of state and federal coal mining statutes in 1972 and 1977, respectively. There are more than 67,000 acres of abandoned coal mine lands in Missouri. Although nature has adequately reclaimed much of this land over the years, more than 10,000 acres have been identified that require reclamation work to correct a wide range of public health, safety and environmental problems. The worst of these problems are being eliminated by DNR's Land Reclamation Program through reclamation of abandoned mine lands. Federal funds for these projects are collected by fees charged for each ton of coal mined in the U.S. These funds are distributed to Missouri and other states by the federal Office of Surface Mining Reclamation and Enforcement. Since 1982, 88 abandoned mine land projects have been completed, reclaiming 3,871 acres. Acid mine drainage from abandoned coal mine lands severely degraded several streams, most notably Cedar Creek in Boone and Callaway counties, Manacle Creek in Callaway County and Middle Fork of Tebo Creek in Henry County, resulting in massive fish kills in the past. Reclamation projects completed from 1988-1994 in these watersheds successfully alleviated most of the acid mine drainage problems of these streams. Negative impacts on aquatic resources have been greatly reduced. The Land Reclamation Program has received federal funds from the Office of Surface Mining's Clean Stream Initiative. These additional funds are provided to states to specifically address water quality problems associated with mine drainage. ### ENVIRONMENTAL EMERGENCY RESPONSE The department has Environmental Emergency Response (EER) personnel that are specially trained and equipped to provide technical assistance regarding spill response, containment, and cleanup of hazardous substance releases. The EER staff operates a 24-hour telephone line for receiving reports of hazardous substance spills and other environmental emergencies. Examples of spills that may affect surface water and groundwater resources include releases from petroleum pipelines, barges and other water vessels, petroleum and chemical storage tanks at fueling stations and other fixed facilities, and highway accidents. When a call is received on the spill line, staff documents the call in a written report, and then takes appropriate action. When situations warrant, EER staff will respond in person to the scene to provide oversight, protect the public health and welfare, and assess environmental damages. The EER team has a fleet of specially equipped response trucks and a 24-foot response boat that can be utilized for on-scene responses as needed. The 24-hour telephone number for reporting environmental emergencies to the State of Missouri is (573) 634-2436. The EER Incident Command Center is based within the Environmental Services Program located in Jefferson City. In addition to the Jefferson City EER staff, additional EER personnel are located within five of the DNR regions throughout the state. In FY '99, EER staff recorded 2,225 incident reports. Of that total, EER staff responded in person to 606 incidents. The addition of the regional EER staff several years ago has improved the response capability allowing the department to respond in person to more incidents and reduce the overall response time. To illustrate, in FY '96, prior to staffing the regions with trained emergency response personnel, the EER staff responded in person to 17% of the reported incidents. In FY '99, EER staff responded on-scene to 27% of the reports received. When the EER staff is able to both respond faster and to a larger percentage of hazardous substance spills, the public benefits by having state experts on-scene to ensure that the cleanup activities are conducted properly, that any potential hazards to the public health and safety are identified and mitigated, and that any environmental damages are documented. DNR Environmental emergency response boat equipped for responding to petroleum and other chemical spills on major waterways. Floating booms are placed in a creek to contain diesel fuel released from a pipeline. Photos by DEQ/ESP. One of seven specially-equipped EER (Environmental Emergency Response) trucks used by the department for on-scene responses to environmental emergencies. Photo from DEQ/ESP. ### 2000 LRIAN MISSER LAN WARRANTORI #### INTERSTATE USE OF WATER RSMo 640.405 - The department shall represent and protect the interests of the state of Missouri in all matters pertaining to interstate use of water, including the negotiation of interstate compacts and agreements, subject to the approval of the general assembly. Any department of state government affected by any compact or agreement shall be consulted prior to any final agreement. Missouri shares the waters of its major rivers with 19 other states. Upstream states and Indian tribes can use water from these rivers before the streams reach Missouri. Federal agencies also manage much of this water. To make sure that Missouri's interests are considered, the department represents the state of Missouri in the following interstate river associations: #### UPPER MISSISSIPPI RIVER BASIN ASSOCIATION The Upper Mississippi River Basin Association (UMRBA) is made up of representatives of Missouri, Wisconsin, Minnesota, Iowa and Illinois. Governor Carnahan appointed Steve Mahfood, director of DNR, as Missouri's UMRBA representative. The Association developed a master plan to balance economic development with environmental improvement on the upper Mississippi River. UMRBA works through Congress and the states to carry out provisions in the master plan, and pursues a legislative agenda as agreed upon by the state members. The Association also serves in an oversight or review capacity for the ongoing Mississippi River Navigation Study, scheduled for completion in 2000, to improve river transportation and the river environment. The Association has been very successful in attracting private and federal funding to enhance the Mississippi River. #### MISSOURI RIVER BASIN ASSOCIATION Membership of the Missouri River Basin Association (MRBA) includes Missouri, Kansas, Iowa, Nebraska, North Dakota, South Dakota, Montana, and Wyoming, plus one member representing the basin's Indian tribes. Governor Carnahan appointed Steve Mahfood, director of DNR, as Missouri's MRBA representative. The Association is currently working with the U.S. Army Corps of Engineers on revising the Master Water Control Manual for the Missouri River. It also pursues a legislative agenda as agreed upon by its Board of Directors, and provides a forum for the discussion of contemporary water resource issues in the basin, such as tribal water rights, flow management, agricultural issues, and endangered species. For the past 12 years, the states of the Missouri River basin have been embroiled in controversy over how the river should be managed. The disagreement, brought on by severe and persistent drought that began about 1988 and ended with the Great Flood of '93, focuses on the requirements embodied in the Missouri River Master Water Control Manual. This document, familiarly called the "Master Manual," guides the Corps' Reservoir Control Center in Omaha. The Control Center operates the system of dams and reservoirs that enable management of the river's flow. The Master Manual was written to direct the Corps' administration of the Water Development Act of 1944, which authorized construction of the dams and directed the Corps to provide benefits as specified in the legislation. As long as rainfall in the basin was normal or above, there was little disagreement between the states of the upper basin and those of the lower river. However, the system was not severely tested by drought until reservoirs began to be drawn down in response to the six-year drought from 1986 through 1992. The crux of the disagreement is fundamental. Upper basin states contend that reservoir levels ought to be held at high levels - even in drought - to protect the recreational industry that has developed around the six large lakes on the upper river. Missouri views this position with considerable alarm, because it would deny our state the use of a significant share of the water stored in the reservoirs. In effect, if the upstream states are successful in changing the management strategy to meet their demands, it would completely compromise the purposes for which the system was designed and built. The design objectives for the system were to store water in wet seasons, releasing it in dry seasons to provide flood control, navigation, water supply, power generation, irrigation water, and fish and wildlife benefits throughout even the most severe droughts. Since 1998, the MRBA has been working on a consensus management plan for the Missouri River to recommend to the Corps of Engineers. The plan MRBA eventually adopted was not supported by Missouri because it placed too much emphasis on retaining water in upstream reservoirs for recreational purposes, and placed Missourians at greater risk of catastrophic flooding. During 2000, the U.S. Army Corps of Engineers plans to hold public workshops and hearings on the management strategy it will recommend, and Missouri will develop formal responses in an effort to reach eventual concurrence on a plan that will respect and protect Missouri's interests. ## ARKANSAS-WHITE-RED BASINS INTER-AGENCY COMMITTEE The Arkansas-White-Red Basins Inter-Agency Committee (AWRBIAC) includes representatives from the states of Missouri,
Arkansas, Louisiana, Texas, Oklahoma, Kansas and New Mexico. Governor Carnahan appointed Steve Mahfood, director of DNR, as Missouri's AWRBIAC representative. Federal agencies in AWRBIAC include the Dept. of the Interior, U.S. Geological Survey, Bureau of Reclamation, National Oceanic and Atmospheric Administration, Federal Emergency Management Agency, U.S. Army Corps of Engineers, Southwestern Power Administration and the Natural Resources Conservation Service, USDA. The committee exists primarily for coordination and communication purposes. Administration and hosting of meetings are rotated among both state and federal members. The primary activity of interest to Missouri is the development of operating plans for the White River, which includes Table Rock Dam, Clearwater Dam, and part of Lake Norfork in Missouri. Also of interest is the development of abatement measures and methodology to improve dissolved oxygen content of the tailwaters of White River dams. A revised operating plan for the White River has been developed that improves economic return while addressing issues related to low dissolved oxygen in the tailwaters that flow from hydropower dams. ## LOWER MISSISSIPPI RIVER CONSERVATION COMMITTEE The Lower Mississippi River Conservation Committee (LMRCC) has membership that includes the states of Missouri, Tennessee, Kentucky, Arkansas and Louisiana. Federal agencies represented include the U.S. Army Corps of Engineers, Environmental Protection Agency, U. S. Geological Survey, Natural Resources Conservation Service and U.S. Fish & Wildlife Service. The LMRCC differs from other basin associations by including fish and wildlife agencies as well as environmental regulatory agencies. The LMRCC has several standing subcommittees that deal with specific subsets of lower Mississippi interests, such as fish and wildlife and water quality. The LMRCC is addressing several water quality issues, including Gulf hypoxia (low dissolved oxygen). Hypoxia is thought to be caused by excessive nutrients in Mississippi River water flowing into the Gulf of Mexico. High nutrient levels ultimately result in oxygen depletion in the water and the development of a widespread "dead zone" in the Gulf that has been characterized as the marine equivalent of the "ozone hole" over Antarctica. This is an issue for Missouri because some of the nitrogen and phosphorous nutrients sources have been identified as coming from grain-producing states in the Midwest, from both urban and rural areas including point and nonpoint sources, e.g. effluent from wastewater treatment plants, and stormwater runoff from golf courses, parks, and farmlands. ## INTERSTATE COUNCIL ON WATER POLICY The Interstate Council on Water Policy (ICWP) is a national organization, with members representing state water resource agencies, that strives to promote the interests of states in dealing with the federal government on issues related to water. ICWP has a Washington office and a board of directors elected from among state members. The organization sponsors annual forums addressing water resource issues of interest to states, and an annual conference in Washington to bring together federal agency officials and Congressional staff with state representatives to discuss water resource concerns of states. Missouri is an active participant in ICWP activities. ## MISSISSIPPI RIVER PARKWAY COMMISSION The membership of the Mississippi River Parkway Commission (MRPC) includes all states of the Mississippi River main stem, plus various other agencies and interest groups. The MRPC's major thrust is toward improving opportunities for tourism growth along the Mississippi River corridor from New Orleans to St. Paul. In 1997, Governor Carnahan appointed four commissioners and the Missouri legislature appointed four members, to form a revitalized Missouri commission. The department participates in a technical advisory capacity, with the Missouri departments of Transportation and Conservation, and the Division of Tourism. Missouri's participation in the MRPC has focused on improving the environmental quality of the river corridor as a way to increase the region's attractiveness to tourism and economic development. #### MISSISSIPPI RIVER BASIN ALLIANCE The Mississippi River Basin Alliance (MRBA) includes both individual and agency/corporate memberships. The Alliance focuses on environmental issues throughout the Mississippi River basin. Various committees address issues of current importance, such as environmental justice, nonpoint source pollution, legislative agenda, and monitoring federal initiatives. The MRBA meets annually, usually in St. Louis, for technical sessions and training activities. ## 2000 URLAW MISSOLIA WA MARIPORT ## MONITORING WATER QUALITY RSMo 640.409 calls for the department to establish, develop and maintain an ongoing statewide surface and groundwater monitoring program, the purposes of which are the following: 1) determination of ambient surface and groundwater quality for use as background or baseline water quality data; 2) detection of trends in the character and concentration of contaminants in surface and groundwater resources; and 3) identification of areas highly vulnerable to contamination. The Department of Natural Resources (DNR) conducts an extensive monitoring program for chemicals and microbial contaminants in public drinking water systems. In FY 99, more than 2,700 public water sup- plies were tested, with over 147,000 samples analyzed. This effort covers both surface and groundwater sources. Most of the tests are performed on tap water, the "finished" water that people drink or use for cooking; this is water after treatment. Chemists go through many steps to analyze a sample of drinking water. Photo from DEQ/ESP. Some "raw" water monitoring also is done to provide operational data to water system operators, and to help them in their treatment processes. For example, well water is tested to help the water companies know what is entering their water works. This helps them know what treatment to provide and to prepare in advance for potential problems with future regulations. The vast majority of water quality violations are for failure to meet the requirements of the Total Coliform Rule. Total coliform bacteria serve as an indicator that disease-causing organisms may be present, and all public water systems in the state must test for this type of bacteria every month they dispense water to the public. #### VIOLATIONS DOWN Comparing the January-September interval for 1998 and 1999, total coliform violations decreased 16% (from 396 to 331), major monitoring violations decreased 14% (from 863 to 738), and acute MCL's for fecal coliform/E. coli decreased 56% (from 68 to 30). Although weather conditions may have contributed somewhat to the elevated numbers of violations in 1998, the department's on-going compliance and technical assistance activities have been largely responsible for the reduction in violations from 1998 to 1999. The number of major monitoring violations decreased from 1,328 in 1996 to 1,226 in 1997, and fell to 1,140 in 1998. A number of systems missed collecting samples for one or two months; relatively few systems missed sampling for three or more months. Public water systems with serious water quality violations potentially affecting public health or multiple monitoring violations are placed on a Significant Non-Complier (SNC) list. The DNR works closely with violators to return them to compliance in a timely manner. During 1997, only 87 of the 2,692 public water systems were on the SNC list. In 1998, this number fell to 83 while the number of public water systems increased to more than 2,700. For all violations, public water systems are required to notify the customers they serve. The method of notification varies by the violation and system type. Some water quality violations, such as the confirmed detection of fecal coliform bacteria or E. coli, warrant more immediate action due to the threat to public health. For such acute violations, DNR requires systems to immediately notify their customers to boil their water before consumption. Boil water orders remain in effect until the problem has been corrected, and the water is safe to consume. In addition to compliance monitoring, the department also provides monitoring that assists public water systems to anticipate the impact of future regulations. For example, the department began providing testing in January, 1996, for disinfection by-products in water, such as total trihalomethanes (TTHM). TTHM's are potential cancer-causing agents. The new federal regulations are more stringent than existing regulations and may be difficult for some small surface water supplies to meet. The department has until December, 2000, to have similar rules in effect. To help water systems plan and prepare for the new requirements, the department has provided TTHM testing for the past three years. This has enabled water systems to know in advance if they would have a problem meeting the new regulations so they could make necessary adjustments. #### RADON In 1999, the department completed a round of special monitoring for radon at all of Missouri's community and non-transient non-community groundwater systems. Information from this special monitoring will show where the potential radon problems are located before the new federally mandated radon requirements become effective. This will allow the department to estimate the resources needed to implement the new rule and allow water systems with possible violations more time to implement compliance strategies. The department also completed a round of special gross beta particle monitoring for all community and non-transient non-community systems. Gross beta will be a screening tool under federally mandated radionuclide regulations that are expected in the next few years. The results of the testing will be correlated with existing radionuclide occur-
rence data and will show where potential new radionuclide problems might be located. Follow-up monitoring was conducted at systems with high gross beta levels to determine if other regulated radionuclides were present at levels of concern. This will allow the department to estimate the resources needed to implement the new rule and give water systems advance notice of potential problems. The department has been testing public water systems for methyl tertiary butyl ether (MTBE) since 1994. Public water systems served by surface water are routinely tested once a year and groundwater systems, once every three years. By the end of 2000, at least two rounds of testing will have been completed for all public water systems. In addition to the routine testing, MTBE results are also provided when other volatile chemical tests are run. The larger public water systems (serving 10,000 or more people), all surface water systems and some groundwater systems are tested every three months. Missouri has been fortunate in that over the years only two public water systems have been impacted by MTBE contamination. In both cases, the source of contamination was leaking underground petroleum storage tanks. One of the systems affected by MTBE was a non-community water system that was able to discontinue using that water source and connect with another one. The other affected system was a small community. With financial assistance from the department's Petroleum Storage Tank Insurance Fund, they are in the process this year of replacing the contaminated wells. A part of the monitoring plan is a vulnerability assessment performed to support the "waiver of monitoring" requirements. This indicates various threats to specific public water supplies and allows that information to be considered in establishing monitoring requirements. The Public Drinking Water Program uses a vulnerability assessment to determine which sources of drinking water need to be tested for certain chemicals. If certain chemicals are located in a geographic area and may potentially affect a drinking water source, that source is monitored for the presence of those chemicals in the water. This allows the cost of analysis to be focused on the vulnerable sources. Without these assessments, the department would have to test every drinking water source for every chemical listed by the U.S. Environmental Protection Agency (EPA) as a drinking water contaminant. The department studies the recharge areas of springs, and delineates losing streams and sinkholes to determine areas where groundwater is particularly prone to contamination. Harmless fluorescent dyes are used to trace the movement of groundwater from its recharge area to its discharge point. Since 1989, the department has performed numerous water traces in karst areas where groundwater resources can easily become contaminated by surface activities. In karst areas, much surface water is channeled underground in losing streams and sinkholes. The water lost to the subsurface typically resurfaces, sometimes as far as 40 miles away, at a spring or springs. Water wells between the recharge point and the receiving spring can be affected by contaminants entering losing streams and sinkholes. The results of individual dye traces are stored in the department's Dye Trace Data Base. Since 1989, several reports have been published that describe in-depth studies of several major spring systems (Hydrogeology of the Bennett Spring Area, Laclede, Dallas, Webster, and Wright Counties, Missouri, Water Resources Report No. 38; and Hydrogeology of the Maramec Spring Area, Water Resources Report No. 55) are examples. The Water Well Drillers law requires that all persons engaged in water tracing register with the department and renew the registration annually. All proposed injections must be reported to the department's Division of Geology and Land Survey prior to injection of dye, and written and graphical documentation of traces is provided to the department within 30 days after completion of each trace. The information will be provided to interested parties upon request at cost of reproduction. For the trace to be included in the department's dye trace database, the data must be examined by a three-member Dye Trace Committee. If the data quality and documentation are satisfactory, then the results are entered into the department dye trace database. Compliance monitoring is performed to test wastewater from facilities with National Pollutant Discharge Elimination System (NPDES) state operating permits. The department performs a variety of water- and sediment-quality investigations each year in the form of complaint investigations, wasteload allocations, ecological risk assessments, and fish tissue contaminant monitoring. Department biologists are currently developing aquatic macroinvertbrate-based "biocriteria" for assessing stream quality in each eco-region of the state. These criteria will eventually be incorporated into the state water quality standards. Due to the Flood of 1993, a federally funded sanitary landfill monitoring project for flood-damaged sanitary landfills was implemented. Effects of the flood included periods of surface ponding, soil saturation, and elevated groundwater table and increased velocity in the subsurface movement of water. The department received equipment and training to monitor landfills that operated before and after the flood to determine if any surface or groundwater contamination occurred. Staff collect fish for analyses of pollutants that may accumulate in fish tissues. Photo from DEQ/ESP. The results of the study indicated that landfills contributed no measurable contamination of surface water off-site. Also, no impact to groundwater could be determined to have taken place. However, many of the landfills studied did experience a significant increase in the migration of landfill gas (methane) through the soil away from their facilities. Some of these migrations present a potential public safety problem due to the dangers associated with explosion or asphyxiation should the gas accumulate in nearby structures. For example, in the spring of 1998, a fire started in the basement of a private home situated next to a closed landfill. A field investigation conducted by the DNR confirmed that the fire was caused by methane gas migrating from the landfill into cracks in the floor, and igniting from the water heater. No one was injured; however, within weeks of the investigation, the landfill owner purchased the home and property from the citizen, and bought another home that was threatened. Both homes were vacated due to the ongoing threat of explosion. Through an extension of the original project, further study is underway to gain a better understanding of what can be done to evaluate and address these methane gas migrations that may occur at landfills throughout the state. # SURFACE WATER QUALITY MONITORING The major purposes of the water quality monitoring program are to: - characterize "background" or "reference" water quality conditions; - better understand flow events, and diurnal and seasonal water quality variation and its underlying processes; - 3) characterize aquatic biological communi- - ties and habitats, and distinguish between the impacts of water and habitat quality; - 4) assess time trends in water quality; - characterize specific and regional impacts of point and nonpoint source discharges on water quality and; - to check for compliance with water quality standards or wastewater permit limits. All of these objectives are statewide in scope. Reference conditions of water chemistry and of aquatic macroinvertebrates have been or are being used to develop water quality standards. Due to the cost of environmental monitoring, the department routinely coordinates its monitoring activities with other state and federal agencies. The strategy for monitoring varies by the waters being sampled. Many water quality monitoring strategies exist including monitoring effluent discharges, monitoring the impacts of discharges upon localized surface waters, monitoring extended impacts from effluent sources, and conducting surveys of "background" conditions. The monitoring activities through which these strategies are implemented take several forms: - Fixed station chemical monitoring networks. DNR maintains 63 fixed stations through cooperative agreements with the U.S. Geological Survey, and routinely tracks data from about 60 other sites. - 2) Intensive surveys - Special topic monitoring (fish kill investigations, bacterial monitoring, contaminant transport studies, etc.) - 4) Toxics monitoring - 5) Biological monitoring (of aquatic macroinvertebrates). DNR presently is monitoring 60 streams annually. - 6) Fish tissue, sediment, and shellfish monitoring. The Missouri Department of Conservation monitors about 30 sites and DNR/USEPA monitors about 20 sites annually for toxicants, primarily pesticides - and metals, in fish tissue. - 7) Monitoring by volunteers A cooperative program between DNR, the Dept. of Conservation, and the Conservation Federation of Missouri has trained and equipped over 970 people around the state to conduct both chemical and biological water quality monitoring. Much of these data are reported back to state agencies. Bottom-dwelling invertebrates are sampled because they are good indicators of stream water quality. Photo from DEQ/ESP. ## MONITORING PROGRAM EVALUATION The water quality monitoring program within the department evolved as a program to characterize and cope with point source wastewater discharges. This program, which has stressed chemical monitoring, appears to have been successful. In 1998, the department shifted emphasis of monitoring programs in the following ways: - maintain the size of the fixed station flow and chemistry network, and include chemical analysis of sediments in some streams; - 2) increase the amount of intensive chemical and biological water quality
studies; and - 3) increase the amount of aquatic invertebrate sampling statewide toward the development of biological criteria within the water quality standards. The major reasons for these changes are the perception that: - more large municipal or industrial wastewater discharges need substantial water quality study to fully understand their impacts on receiving waters than the department is presently able to conduct; - biological criteria may be better than conventional chemical monitoring for characterizing many nonpoint pollution sources; - 3) many problems in streams are not due to water chemistry problems, but to physical problems in the stream channel, in the riparian zone, or farther up in the watershed. The biggest challenge will be to find a way to assess the water quality impact of thousands of confined animal feeding operations across the state. To date, the Department of Natural Resources and the Department of Conservation have been able to investigate and document at least a portion of all discharges that have caused fish kills, but no monitoring program has ever tried to assess the day-to-day sub-acute impacts of these pollution sources, which may be significant. # INVENTORY OF WATER USE AND AVAILABILITY RSMo 640.412 - The department shall maintain an inventory of ground and surface water uses, quantity and users. - The department shall inventory the following: 1) existing surface and groundwater uses; 2) quantity of surface and groundwater available for uses in the future; and 3) water extraction and use patterns. #### WATER USE As part of the Major Water Users Law (RSMo 256.400), the department compiles water use information. Major water users are defined as those users that are capable of pumping greater than 100,000 gallons per day from either groundwater or surface water. There are 1,940 users registered. There is no penalty for failing to report. Most likely, there are many major water users that do not report. The Major Water User Database includes information about location, amount of water used and type of use (domestic, municipal, irrigation, recreation, industrial, electrical generation, fish and wildlife, and drainage.) The department is updating the water user registration forms for Internet compatibility. Currently, the water user registration forms are mailed via the U.S. Postal Service to the major water users in the state. Users type in or print in the information and then mail the completed form back to the department. The first stage of the programming is finished and allows Internet access to the registration forms. Adobe Public Document Format (PDF) computer files of the registration forms are now available. These PDF files are linked to the Water Resources Program-Major Water Users Unit Internet web page (http://www.dnr.state.mo.us/dgls/wrp/wateruse.html). The second stage will allow users to complete their annual reporting obligation by filling out the forms on their home com- puters, and sending them to the department for registration. The registration forms will be able to be filled out on the computer screen and then submitted via e-mail (mowaters@mail.dnr.state. mo.us) to the department. The final stage, some time away, will allow interactive communication between the users' computers and the department's computers, so that the public can view their own water usage and anyone can view and study water use trends by area and source. The department's Internet firewall and other safeguards must be in place before public sharing of the Major Water Users database will be allowed. The data may be copied or "downloaded" to individual computers so that people can study them. The original, master database will be write-protected and in read-only mode so that the data are not altered. During the last several years, the data have been geographically referenced so data users can develop data layers on geographic-based data platforms. Water withdrawal information is now in both the latitude-longitude format and the township-range format. Public drinking water systems are significant users of both surface and groundwater. The Census of Missouri Public Water Systems, published by the department, provides many details about water use by public water systems. It includes the water source, the production capacity and average daily consumption, the location of surface water intakes, and the number of customers served. Today, there are 2,748 public water systems serving cities, water districts, subdivisions, trailer parks, and institutions. Almost 5 million citizens of Missouri use public water systems as their source of water. The total produc- tion capacity of our community water systems is 1,823 million gallons daily (MGD), with an average consumption of 799 MGD. (Cities and water districts are examples of community water systems.) #### **GROUNDWATER AVAILABILITY** Most cities in southern Missouri rely on groundwater for all of their water-supply needs. The department is sometimes called upon to determine if the amount of water being used is causing long-term water level changes in aquifers, or causing water quality changes. The results of some of these studies have been published (A Hydrologic Analysis of the Ozark Aquifer in the Rolla Area, Water Resources Report No. 41; Hydrogeologic Investigation of the Fulbright Area, Greene County, Missouri, Water Resources Report No. 43). ## GROUNDWATER-LEVEL OBSERVATION WELL NETWORK The Missouri Department of Natural Resources, Water Resources Program operates and maintains a network of ground-water-level observation wells across the state. The wells are equipped with recorders that measure and record the distance from land surface to the water level in the well. Water levels in the wells change in response to changes in natural conditions as well as changes caused by groundwater production from the aquifers. During extended periods of dry weather, depth-to-water in most wells, especially those penetrating relatively shallow aquifers, increases as water drains from the aquifer to emerge at springs and streams. Groundwater recharge is ultimately provided by precipitation, so periods of wet weather cause depthto-water to decrease in shallow aquifers. Deeper aquifers generally respond more slowly to recharge except in some Ozark areas where groundwater recharge is extremely rapid. Groundwater levels also lower in response to pumping. Groundwater produced from private and municipal water supply wells throughout the state remove billions of gallons of water each year from Missouri's aquifers. But this accounts for only a fraction of the total amount of groundwater that is used. Industrial and agricultural water use continue to increase yearly, placing additional stresses on the groundwater resources of the state. When groundwater production exceeds recharge, the water level in the aguifer begins to decline. The observation well network is the state's most effective tool for monitoring the quantity of water available from the state's major aquifers. The observation wells are akin to the oil dipstick in a car. A dipstick allows the owner to monitor the level of vital fluid, which protects the engine from damage. Observation wells perform much the same task. They also allow the level of a precious fluid to be monitored, hopefully allowing problems to be corrected before long-term damage results. Systematic groundwater-level data collection has been an ongoing activity since the late 1950s. The first equipment was installed to help answer water supply questions when the state was suffering from a severe, prolonged drought. The initial network consisted of about 20 wells, most of which were placed on state-owned property. A few of the early wells were abandoned or otherwise unused wells donated by individuals, municipalities, or companies. The early equipment used for this work consisted of mechanical recorders that used a moving pen and roll paper to record changes in water level. A float was attached to a beaded cable and lowered into the well where it rested on the surface of the water. The beaded cable passed over a pulley on the recorder, and went back into the well. A counterweight attached to the end of the cable held the proper tension. When water level changed it caused the float to rise and fall. That movement was transferred to the pulley on the recorder by the cable. As the pulley rotated, it moved the pen back and forth, drawing a line on the paper. The long roll of chart paper moved through the recorder at a constant rate of 1.2 inches per day. The recorder was powered by a 12-pound weight that was suspended over the well. A very accurate mechanical clock governed the speed at which the chart paper was transported through the recorder. These recorders were extremely durable and reliable. In fact, about one-third of the recorders currently in use are mechanical recorders that were purchased in the 1950s and 60s. The mechanical recorders had two major drawbacks, one of which was not apparent until computers became available. A major drawback of the mechanical recorder is the time necessary to process the data that they collected. The recorders are geared so that a water-level change of 1 foot caused the pen to move 2 inches. This allows very minor changes in water level to be accurately recorded. But since the paper is only 10 inches wide, it would record a maximum water-level change of only 5 feet before reaching the margin of the paper. When the pen reaches the edge of the paper it reverses direction and continues to record data. Thus, at each pen reversal, the up-down direction on the paper changed. It takes more than 36 feet of paper to record a year of data. Even if the charts are collected every few months, they may contain more than a dozen reversals. All of this makes data interpretation a complicated and time-consuming activity. Furthermore, the data are analog, and another step is required to create computer-compatible digital
data, either by using a digitizer or manually entering values into a computer. The next generation of equipment solved some of these problems, but in the process created a few new ones. In 1979 and 1980, electromechanical digital waterlevel recorders were purchased to partly replace the aging mechanical recorders. By this time, the network had grown to about 32 wells. Almost all of the wells added since the late 1950s were existing wells that were loaned to the state for observation well use. The digital recorders measure depth to water much like the mechanical recorders. They, too, use a float that rests on the water surface in the well. But instead of a beaded cable they use a 3/8inch wide, flat stainless steel tape to transfer movement of the float to the recorder. The stainless steel tape has 0.1-inch diameter perforations spaced precisely 2.4 inches apart that mate with pins on the recorder pulley. This prevents slippage in the system and maintains a high degree of accuracy. A counterweight to maintain tension is attached to the free end of the stainless steel tape, which goes back down the well. One revolution of the recorder pulley is equal to a water-level change of precisely 1-foot. Unlike the mechanical recorders that record data continuously, the digital recorders use electronic timers that can be set to record data in time increments ranging from a minimum of 5 minutes to a maximum of 60 minutes. The digital timers used are extremely accurate, generally to within a few minutes per year. The data are recorded on paperpunch tape. The recorder pulley, moving in response to changes in water level, changes the positions of a complicated set of cams. When the timer triggers the recorder, the cams cause pins to punch a line of holes in the paper tape. After the holes are punched, the paper tape is advanced one unit, and the recorder remains idle until the timer reaches the end of its next timing cycle. The recorders use a binary code to record data. It is possible to decipher the tapes by hand, but a digital tape reader in the office is generally used to read them. The tape reader can process a year of data collected at hourly intervals (8,760 data points) in less than 4 minutes, and enters those values into a computer data file. The digital recorder's big advantage over the mechanical recorder is the relative ease with which data can be processed and used. But like the mechanical recorders, the digital recorders employed many moving parts that are subject to mechanical wear. Because of how and where they are used, the recorders must be placed in harsh environments to collect data. Temperatures can range from well below zero to more than 120 degrees Fahrenheit. Humidity can be as high as 100 percent. Such conditions are conducive to mechanical failure. The high-torque, low-speed mo- tors that power the mechanical parts of the units are very expensive, and long-term wear decreases their mechanical efficiency. The digital timers, like all solid state electrical devices, can also fail. In the 20 years that the digital recorders have been in use, many of them have needed a new motor, a new timer, or both. The large dry-cell batteries that powered the units needed replacing about every 6 months. Additionally, the company that manufactured the digital recorders has ceased supporting them, and by 1998 it was nearly impossible to purchase replacement parts for them. Both the mechanical and digital water-level recorders require frequent field visits to recover the raw data and to perform routine maintenance. In both cases, it is impossible to know if the units are working properly without physically visiting the station and recovering the charts or tapes. Most of the time the units work flawlessly at remotely collecting data. However, mechanical or electrical failures, vandalism, extreme weather conditions, and other factors cause them to occasionally fail. Failures cannot be ascertained without field visits. By the early 1990s, the network had grown to include about 46 wells. The total number fluctuates due to property ownership changes, though, and has been as high as 50. Occasionally, recorders are placed on wells to address a particular problem or concern, and may be removed after collecting only a year or so of data. In 1999, an expansion approved by the Legislature resulted in the purchasing of new equipment to completely replace the aging recorders. The old equipment is being replaced with data collection platforms consisting of electronic data recorders and digital encoders. In some ways, the new data-collection system is like the old ones. The same floats and stainless steel tapes used by the digital recorders can also be used by the data collection platforms. The movements of the float are measured and translated into a computer-compatible format by a device called a digital encoder. Data from the encoder are fed into the recorder where they are processed and electronically recorded. The only moving parts are the encoder pulley and shaft, and even it uses an optical counting system to detect the movement rather than a mechanical system. The data recorder or data logger is the heart of the system. It is essentially a dedicated microcomputer that is programmed to control all of the aspects of data collection. The most significant advance is how the data are recovered. Like the mechanical and digital recorders of yesteryear, data collected by the new system are stored internally in the recorders. But unlike the old equipment, the data are also transmitted back to the office using the GOES satellite system. Each recorder unit contains a small GOES UHF radio transmitter that has about the same power output as a CB radio. Its target is a GOES satellite in a geostationary orbit some 22,000 miles in space. A small, directional Wave of the future — new observation well recorders. These new data collection platforms consist of electronic data recorders and digital encoders. Water level information from each observation well is transmitted via sattelite every four hours, allowing almost instantaneous access to important data. Photo by Susan Dunn. hi-gain antenna and a slow data transmission rate allows the low-power radios to accurately and reliably send the data over such a distance. Each recorder unit is assigned a unique identification number and given a time slot that it can use for data transmission. For a one-minute period every four hours, the GOES satellite "listens" for a signal from only one unit. No other stations are transmitting to that satellite at that time on that data channel. The data are received at an Earth station in Little Rock, Arkansas, and automatically sent to Rolla via phone modem. An Internet web site currently under construction will allow the data to be accessed by anyone worldwide within a few hours after it is collected. It also allows the performance of each of the data collection platforms to be remotely monitored on a regular basis. If a station quits sending data, a technician is dispatched to repair the problem. In many cases, even if the station quits sending data via satellite, the data are still stored in the data recorder. The data collection platforms are designed to be self-sufficient. High-capacity sealed lead acid batteries power them. Photovoltaic solar panels keep the batteries fully charged. This highly efficient renewable energy resource is one of the keys to the effective operation of the monitoring well network. The batteries have ample capacity to power the installations a full year, even if the solar panel becomes inoperative. The number of observation wells is being expanded about 50 percent to a total of 70 wells throughout the state. Some of the new installations will be located in remote areas to collect ambient groundwater-level data, but many of the new installations will be placed where municipal, industrial, and agricultural groundwa- ter use is placing ever-increasing demands on groundwater resources. The legislature approved expending funds to drill 15 new wells. To reach the goal of 70 monitoring wells, the remaining nine wells will be ones donated to the state for observation well use. The data from the observation well network is processed and published in an annual report (currently available through Water Year 1993). The data reports contain the average daily water level for each station, a graphic representation of the data, and daily precipitation from the nearest National Weather Service recording station. #### SURFACE WATER AVAILABILITY The department is a cooperator in the U.S. Geological Survey program that collects and publishes water data for Missouri's surface and groundwater resources. Substantial amounts of surface and groundwater information have been collected through this effort, and published annually in a report series titled Water Resources Data-Missouri. Records have been collected in this manner for nearly 75 years. The scope of data collection efforts has widened to include surface and groundwater quality information. Presently, the stream-gaging network monitors flow and stage at 139 stations, the stage at 12 lakes and reservoirs, and surface water quality at 53 sites statewide (including 2 lakes and reservoirs). Water quality stations include physical, chemical, and biological parameters such as water temperatures, specific conductance, dissolved oxygen, pH, carbonate, bicarbonate, alkalinity, inorganic constituents, nutrients, trace elements, indicator bacteria, sediment, and pesticides. #### DAM SAFETY The department maintains two databases on dams in the state. The STATUS database contains only those dams that are regulated in accordance with Chapter 236 of the Revised Statutes of Missouri. This includes dams that are 35 feet or more in height as measured from the crest to the downstream toe of the dam. The number of dams currently included in this database is 621. The database includes spatial and physical data,
downstream hazard classifications, ownership information, water use, and the current regulatory status of each dam. The NATDAM database is maintained through a continuing contract with the Federal Emergency Management Agency (FEMA) and the Association of State Dam Safety Officials. This database includes dams that meet the height and storage criteria established by FEMA and are identical to the criteria established by the U.S. Army Corps of Engineers for the original national inventory compiled in the 1970s. Dams which are 25 feet or more in height with a storage volume of at least 15 acrefeet, or which are 6 feet or more in height with a storage volume of at least 50 acrefeet, are included in this inventory. The number of dams currently inventoried in this database is 4,075. The database includes spatial and physical data, downstream hazard rating, water use, ownership information and purpose of the dam. ## 2000 LRIW MISSTER LAL WALTER ORI ### STATE WATER PLAN 640.415—1. The department shall develop, maintain and periodically update a state water plan for a long-range, comprehensive statewide program for the use of surface water and groundwater resources of the state, including existing and future need for drinking water supplies, agriculture, industry, recreation, environmental protection and related needs. This plan shall be known as the "State Water Resources Plan." - 2. The department shall establish procedures to ensure public participation in the development and revision of the state water plan. - 3. The department shall submit a report to the general assembly at least one year prior to the submission of the state water resources plan, and may recommend any statutory revision which may be necessary to implement the requirements of this section. The plan shall be submitted to the general assembly for approval or disapproval by concurrent resolution. #### BACKGROUND Since 1989, when the Water Resources Law was passed by the Legislature, DNR has undertaken activities to address and fulfill the requirements set forth in RSMo 640.415. Specifically, these activities include public participation, issue identification, needs assessment, resource inventory, and multi-level planning and coordination. DNR has sought public input through the use of various forums that have included statewide public meetings and conferences, regional meetings and stakeholder meetings. This effort has included the Missouri Rural Opportunities Council (which is composed of various private groups as well as state and federal agencies), Regional Planning commissions, the Water Quality Coordinating Committee, the Missouri Irrigators Association, Missouri Association of Counties, the Clean Water Commission, Distributive Educational Clubs of America, DNR sponsored "Open Houses," the Small Watershed Program Conference, Ozark Scenic Riverways Association, and the Missouri Municipal League. These public input forums serve to support, enrich, and further define the water resource issues first defined in 1990, identify new issues, and inform and educate the public on the broader, and often interrelated, water resource planning issues. A three phase approach is well underway to create a thorough, well thought-out water plan. Phase 1 is the completion of a series of technical documents referred to as the State Water Plan Volumes described in the next section. Phase 2 of the plan is the identification and description of water use problems and opportunities by region. See Phase 2-Regional Reports' section for description of regions. Six regional reports will be completed in this Phase. Phase 3 of the plan will identify the many potential solutions or suggestions to solving Missouri's water use problems or challenges. ### PHASE 1 - STATE WATER PLAN VOLUMES The department has completed all but one of a series of technical documents to provide basic information about Missouri's surface water, groundwater, water use, water quality, interstate issues, hydrologic extremes and water law. These volumes will assist in focusing the development of the Missouri State Water Plan. They will serve to support and complement public participation, issue identification, needs assessment, and multi-level planning coordination. When these volumes are completed, the department will work with groups and individuals across the state to gather input on a regional and watershed basis for the development of the State Water Plan. The Interagency Task Force will also have input into the State Water Plan before it is finalized and submitted to the governor and General Assembly. The seven basic information volumes are being published serially. Completed volumes include Volume I - Surface Water Resources of Missouri, Water Resources Report No. 45, by James E. Vandike; Volume II - Groundwater Resources of Missouri, Water Resources Report No. 46, by Don E. Miller and James E. Vandike; Volume III - Missouri Water Quality Assessment, Water Resources Report No 47, by Cynthia N. Brookshire; Volume IV - Water Use of Missouri, Water Resources Report No. 48, by Charles B. DuCharme and Todd M. Miller; Volume V - Hydrologic Extremes in Missouri: Flood and Drought, Water Resources Report No. 49, by John D. Drew and Sherry Chen, and Volume VI - Water Resource Sharing: The Realities of Interstate Rivers, Water Resources Report No. 50, by Jerry D. Vineyard. The last in the series, *Volume VII- A Summary of Missouri Water Laws*, Water Resources Report No. 51, by Richard M. Gaffney and Charles R. Hays, is currently in review and is very close to being published. A review of what this important volume contains follows: ## VOLUME VII: A SUMMARY OF MISSOURI WATER LAWS The seventh volume in the first phase of the State Water Plan publications addresses statutory law, case law, and common law dealing with many aspects of water use, supply, and resources. Like the other volumes in Phase 1, this document is an inventory and technical assessment book. It is written to be as useful as possible to the widest audience. It can be used as a base source of information, as a reference work, or in conjunction with other State Water Plan volumes to provide comprehensive, factual information on the status of water law and water issues in the late 1990s. The major emphasis of this volume is on contemporary water law—water use, water supply, and water quality—from both judicial (case law) and legislative (statutory law) perspectives. The document is a review of Missouri water law from an historical inventory approach. For the most part, statutory water law addresses forward looking, generalized, broad scope issues that have gained widespread attention of the public, or represent high priorities of our elected officials. The focal points of statutory laws tend to be on the needs and well being of society as a whole. This differs from case law in that much of its emphasis centers on dispute resolution between individuals, and is of a highly detailed and limited nature. Generally, case law's focal points are on ownership and property, natural water, protection from water, water quality, water supply, and water use. The most recent publications on water law before Volume VII of the State Water Plan were prepared by Theodore E. Lauer in 1964 and 1969. They were updated in 1977 by Peter N. Davis and James Cunningham with the assistance of Donald Anderson. Dramatic changes have occurred in the field of environmental law, especially in Missouri water law since that time, and such a volume was warranted in the State Water Plan. Of particular note in this regard was the Missouri Supreme Court's departure in 1993 from the "modified common enemy doctrine" to the law of "comparative reasonable use." Water law is aimed at defining our use of water resources in a fair and equitable manner so as to serve the best interests of all citizens and their needs. With the passage of time, needs and priorities change, new questions arise, and historical facts are reevaluated. These factors drive the evolution of water law. Legal restrictions and requirements on how we use and protect our water resources serve to balance individual needs with the needs of society. Public health, public safety, and the economic well being of the state and its citizens depend on the adequate availability of usable water. The value of our water resources continues to increase in proportion to demand and the recognition of its significance to our quality of life. For these reasons, *A Summary of Missouri Water Laws* will be of immeasurable value to its readers, and to the continuing State Water Planning process. The largest of the seven volumes of Phase 1, this book will be of immense importance to students, vari- ous government agency personnel, property owners, concerned citizens, and anyone who uses water in daily life. #### PHASE 2 - REGIONAL REPORTS The seven technical volumes have been prepared in Phase 1 of the State Water Planning effort. Editing and publication of the final volume will conclude the first phase. Meanwhile, Phase 2 of the effort has commenced, and the first of several regional reports, *Topics in Water Use - Northeastern Missouri*, Water Resources Report No. 59, was received from the printers in early 2000 and is available for distribution. Beginning with Northeast Missouri, the department is preparing a series of six regional reports, identifying water use problems and opportunities. The six regions are congruent with the six regional office territories of the Division of Environmental Quality. See Appendix 2 for a map showing regional outlines. The staff of the Water Resources Program is preparing the reports, with the help of DEQ Regional Office personnel and other agency staffs. The Interagency Task Force (see Section 640.430, RSMo, below) met in 1998 to review the Phase 2 planning process and the Northeast Missouri Report and the department is following the Task Force's recommendations in continuing the planning process. A summary
of the contents of this report is shown next. ### TOPICS IN WATER USE -NORTHEASTERN MISSOURI, WATER RESOURCES REPORT NO. 59 According to the Missouri Water Resources Law, the state water resources plan is to address water needs for the following uses: drinking, agriculture, industry, recreation and environmental protection. Addressing water "needs" requires us to establish why these needs exist in the first place. In some cases, an existing water need is tied to one or more unresolved water problems. For example, communities "need" clean water. To meet this need, communities may have to address problems with water supply infrastructure and source water quality. This report explores the current issues facing the water resources of the northeastern Missouri region. Also included is a section addressing recent successes various water-related programs have enjoyed, and how they have affected the water resources of the region. Although considered individually in this report, water use problems are not truly independent of each other. When reading through the water use problems identified in northeastern Missouri, it will quickly become apparent that many of them are, in fact, very closely related. Water resource professionals commonly subdivide the state into physiographic units, such as watersheds or aquifers. While this approach is important for resource-based discussions, it may not sufficiently address water use problems or solutions. This series of reports addresses the subject using the broad geographic similarities of the six field service areas of the department's Division of Environmental Quality (DEQ) (appendix 2). Each of these regions has distinctive physiographic features and socio-economic characteristics, and therefore was chosen for the ease of referencing water use problems. This approach allows us to recognize Missouri's diversity, and lends itself well to the second phase of the State Water Plan. The area served by the Division of Environmental Quality's Northeast Regional Office is the focus of this report. To this point, staff from this office and other state agencies dealing with water resources have served as the primary sources of input. This has enabled us to draw upon the insight and experience of field staff who, by virtue of their work, deal with many water use issues facing northeastern Missouri on a daily basis. #### TOPICS IN WATER USE: CENTRAL MISSOURI Work is well underway on the second report in Phase 2 of the State Water Planning process. It will cover the 15-county area surrounding Jefferson City, which is the service area for the Jefferson City Regional Office of DEQ (appendix 2). The final working draft is being prepared to present to the Interagency Task Force for comment. #### TOPICS IN WATER USE: NORTHWEST MISSOURI Initial work has also begun on the third report in Phase 2 of the State Water Planning process. It will cover the 21-county area surrounding Kansas City, which is the service area for the Kansas City Regional Office of DEQ (appendix 2). # SPECIAL WATER QUALITY PROTECTION AREAS 640.418-Special water protection area, procedure to establish. 1. The department may establish special water quality protection areas where it finds a contaminant in a public water system in concentration which exceeds a maximum contaminant level established by the environmental protection agency pursuant to the Safe Drinking Water Act, as amended, or a maximum contaminant level established by the department pursuant to this chapter or sections 640.400 to 640.435 or a contaminant in surface or groundwater which exceeds water quality standards established pursuant to chapter 644, RSMo, which presents a threat to public health or the environment. In making such a determination, the department shall consider the probable effect of the contaminant or contaminants on human health and the environment, the probable duration of the elevated levels of the contaminant, the quality, quantity and probable uses of surface or groundwater within the area, and whether protective measures are likely to prevent, mitigate or minimize the level of the contaminant in the surface of groundwater. 2. If the department determines that a special water quality protection area should be established, it shall consult with the interagency task force and with the public water system or systems affected and determine the boundaries of such area. When the boundaries of any such areas have been determined, the department shall, after a public hearing, issue an order designating the area as a special water quality protection area. Such an order shall include a geographic, hydrologic and stratigraphic definition of the area. 3. The department shall hold a public hearing or a public meeting within the area under consideration for designation as a special water quality protection area. The department shall notify every city and county within the proposed area and shall notify the public by press release and by publication of a notice in a newspaper of general circulation in the region. 640.420-Special water protection area, information program to be established, purpose, duties. -When a special water quality protection area has been established, the department shall implement an area informational program to help prevent, eliminate, mitigate or minimize the continued introduction of the contaminant or contaminants into the surface or groundwater. 640.423-Designation as protection area removed, when. -The department shall determine when the level of a contaminant or contaminants in a special wa- ter quality protection area does not exceed, and are not likely to exceed, the water quality standards established pursuant to sections 640.400 to 640.435 and this chapter, and chapter 644, RSMo. Upon such determination, the designation of an area as a special water quality protection area pursuant to section 192.300, RSMo, sections 640.100, 640.120, and 640.400 to 640.435 shall be removed. No special water quality protection areas have been formed under this statute. ## INTERAGENCY TASK FORCE 640.430-Interagency task force established, members, meetings.1. The department shall establish an interagency task force consisting of the departments of health, conservation, agriculture, the University of Missouri College of Agriculture, and other such departments and agencies as may be necessary to effectuate the purposes and provisions of sections 640.400 to 640.435. 2. The interagency task force shall meet at least semi-annually. The department shall be the lead agency in matters related to surface and groundwater protection. #### CENTRAL MISSOURI The department and the IATF are concurrently developing the regional water resource problems and opportunities of central and northwest Missouri. The geographic areas being considered are fixed upon the Division of Environmental Quality regional office in Jefferson City (JCRO) and in Kansas City (KCRO). JCRO problems and opportunities are being developed and initial work has begun on KCRO problems and opportunities. Water Resources Program staff members are developing topics contributed by field staff and others in the department. The IATF members will also be developing problem and opportunity statements for program staff to develop. | , | - | z | | | |---|----|---|--|--| | 7 | ٠, | 1 | | | | | | | | | ## MISSELLAL MISSELLAL MARTINIAL WARTER ### RECOMMENDATIONS 640.426-The department shall prepare and submit to the general assembly and the governor an annual report which details the progress it has made in meeting the objectives of sections 640.400 to 640.435 and which contains recommendations in furtherance of the purpose and provisions of sections 640.000 to 640.435. This 2000 Annual Report explains how the staff of the Missouri Department of Natural Resources carries out the legislative mandates of the Missouri Water Resources Law. It demonstrates the breadth of activities that the department conducts and the progress that has been made in meeting the objectives of the Water Resources law. This report is not a comprehensive listing of the department's water related activities. As the State Water Plan volumes and reports continue to be published, the state's water quantity and quality needs will become more apparent. The goal of the State Water Plan is to produce a set of recommendations for local, regional, and statewide implementation, both short-range and long-range. ### APPENDIX 1 ### MISSOURI WATER RESOURCES LAW 640.400. Citation of law.—1. Sections 640.400 to 640.435 shall be known and may be cited as the "Missouri Water Resource Law", in recognition of the significance of the conservation, development and appropriate use of water resources in Missouri. 2. The department shall ensure that the quality and quantity of the water resources of the state are maintained at the highest level practicable to support present and future beneficial uses. The department shall inventory, monitor and protect the available water resources in order to maintain water quality, protect the public health, safety and general and economic welfare. (L. 1989 S.B. 112, et al. § 1) #### Definitions. 640.403. As used in sections 640.400 to 640.435, the following terms mean: - (1) "Aquifer", a consolidated or unconsolidated subsurface water-bearing geologic formation, group of formations, or part of a formation, or other geologic deposits, capable of yielding a usable or potentially usable amount of water; - (2) "Contaminant", any physical, chemical, biological or radiological substance in water, including but not limited to, those substances for which maximum contaminant levels are established by the department pursuant to sections 640.400 to 640.435, this chapter and chapter 644, RSMo; - (3) "Department", the department of natural resources; - (4) "Groundwater", water occurring beneath the surface of the ground, including underground watercourses, artesian basins, underground reservoirs and lakes, aquifers, other
bodies of water located below the surface of the ground, and water in the saturated zone; - (5) "Maximum contaminant level", the maximum permissible level established pursuant to this chapter of a contaminant in any water delivered to any user of a public water system; - (6) "Special water quality protection area", a geographic area meeting specified criteria established after public hearing by the department; - (7) "Surface water", water in lakes and wetlands, and water in rivers, streams and their tributaries in which water flows for substantial periods of the year; - (8) "Watershed", the area that drains into a river, stream or its tributaries; - (9) "Water resources", water in rivers, streams and their tributaries and water present in aquifers. (L. 1989 S.B. 112, et al. § 2) # Interstate use of water, negotiation of interstate compacts, duties of department—general assembly and other agencies to be consulted. 640.405. The department shall represent and protect the interests of the state of Missouri in all matters pertaining to interstate use of water, including the negotiation of interstate compacts and agreements, subject to the approval of the general assembly. Any department of state government affected by any compact or agreement shall be consulted prior to any final agreement. (L. 1989 S.B. 112, et al. § 3) # Surface and ground water monitoring program, duties of department, purpose. 640.409. The department shall establish, develop and maintain an ongoing statewide surface and groundwater monitoring program, the purposes of which are: - (1) Determination of ambient surface and groundwater quality for use as background or baseline water quality data; - (2) Detection of trends in the character and concentration of contaminants in surface and groundwater resources; and - (3) Identification of areas highly vulnerable to contamination. - (L. 1989 S.B. 112, et al. § 4) # Inventory to be maintained on ground and surface water uses, quantity and users. 640.412. The department shall inventory: - (1) Existing surface water and groundwater uses; - (2) The quantity of surface water and groundwater available for uses in the future; and - (3) Water extraction and use patterns, including regulated and unregulated users. (L. 1989 S.B. 112, et al. § 5) # State water resource plan to be established for use of surface and ground water—annual report, contents—powers of department. 640.415. 1. The department shall develop, maintain and periodically update a state water plan for a long-range, comprehensive statewide program for the use of surface water and groundwater resources of the state, including existing and future need for drinking water supplies, agriculture, industry, recreation, environmental protection and related needs. This plan shall be known as the "State Water Resources Plan". The department shall collect data, make surveys, investigations and recommendations concerning the water resources of the state as related to its social, economic and environmental needs. - 2. The department shall establish procedures to ensure public participation in the development and revision of the state water plan. - 3. The department shall submit a report to the general assembly at least one year prior to the submission of the state water resources plan. The report shall specify the major components of the plan, and may recommend any statutory revision which may be necessary to implement the requirements of this section. The plan shall be submitted to the general assembly for approval or disapproval by concurrent resolution. - 4. The department may: - (1) Require such reports from groundwater and surface water users and other state agencies as may be necessary; and - (2) Conduct investigations and cooperate or contract with agencies of the United States, agencies or political subdivisions of this state, public or private corporations, associations or individuals on any matter relevant to the administration of section 192.300, RSMo, sections 640.100, 640.120, and 640.400 to 640.435. (L. 1989 S.B. 112, et al. § 6) # Special water protection area, procedure to establish. 640.418. 1. The department may establish special water quality protection areas where it finds a contaminant in a public water system in concentration which exceeds a maximum contaminant level established by the environmental protection agency pursuant to the Safe Drinking Water Act, as amended, or a maximum contaminant level established by the department pursuant to this chapter or sections 640,400 to 640,435 or a contaminant in surface or groundwater which exceeds water quality standards established pursuant to chapter 644, RSMo, which presents a threat to public health or the environment. In making such a determination, the department shall consider the probable effect of the contaminant or contaminants on human health and the environment, the probable duration of the elevated levels of the contaminant, the quality, quantity and probable uses of surface or groundwater within the area, and whether protective measures are likely to prevent, mitigate or minimize the level of the contaminant in the surface or groundwater. 2. If the department determines that a special water quality protection area should be established, it shall consult with the interagency task force and with the public water system or systems affected and determine the boundaries of such area. When the boundaries of any such areas have been determined, the department shall, after a public hearing, issue an order designating the area as a special water quality protection area. Such an order shall include a geographic, hydrologic and stratigraphic definition of the area. 3. The department shall hold a public hearing or a public meeting within the area under consideration for designation as a special water quality protection area. The department shall notify every city and county within the proposed area and shall notify the public by press release and by publication of a notice in a newspaper of general circulation in the region. (L. 1989 S.B. 112, et al. § 7) # Special water protection area, information program to be established, purpose, duties. 640.420. When a special water quality protection area has been established, the department shall implement an area informational program to help prevent, eliminate, mitigate or minimize the continued introduction of the contaminant or contaminants into the surface or groundwater. (L. 1989 S.B. 112, et al. § 8) # Designation as protection area removed, when. 640.423. The department shall determine when the level of a contaminant or contaminants in a special water quality protection area does not exceed, and are not likely to exceed, the water quality standards established pursuant to sections 640.400 to 640.435 and this chapter and chapter 644, RSMo. Upon such determination, the designation of an area as a special water quality protection area pursuant to section 192.300, RSMo, sections 640.100, 640.120, and 640.400 to 640.435 shall be removed. (L. 1989 S.B. 112, et al. § 9) # Report by department annually, content. 640.426. The department shall prepare and submit to the general assembly and the governor an annual report which details the progress it has made in meeting the objectives of sections 640.400 to 640.435 and which contains recommen- dations in furtherance of the purposes and provisions of sections 640.400 to 640.435. (L. 1989 S.B. 112, et al. § 10) # Interagency task force established, members, meetings. 640.430. 1. The department shall establish an interagency task force consisting of the departments of health, conservation, agriculture, the University of Missouri, college of agriculture and such other departments and agencies as may be necessary to effectuate the purposes and provisions of sections 640.400 to 640.435. 2. The interagency task force shall meet at least semiannually. The department shall be the lead agency in matters related to surface and groundwater protection. (L. 1989 S.B. 112, et al. § 11) ### Judicial review from final orders of department, procedure—duties of department not to conflict. 640.435. 1. Any person aggrieved by a final order of the department issued pursuant to sections 640.400 to 640.435 may seek judicial review in the manner provided by chapter 536, RSMo. 2. The provisions of sections 640.400 to 640.435 shall not supersede the duties imposed under this chapter and chapter 644, RSMo. (L. 1989 S.B. 112, et al. §§ 12, 13) ### **APPENDIX 2** # DIVISION OF ENVIRONMENTAL QUALITY REGIONAL OFFICE BOUNDARIES | | 62 | | |--|----|--| | | | |